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Abstract

In this paper, we examine relations among various refinements of a perfect equi-

librium. First, we compare two refinements of a perfect equilibrium, a strictly perfect

equilibrium (SPE) and a truly perfect equilibrium (TPE). We show that true perfect-

ness implies strict perfectness. We also introduce the concept of a restrictive perfect

equilibrium allowing only some or all sequences of totally mixed strategies satisfy-

ing a certain property. A proper equilibrium is an example of a restrictive perfect

equilibrium. Then, true perfectness imposing the most severe robustness against per-

turbations implies any restrictive perfectness. This proves that every truly perfect

equilibrium is proper.

Key Words: refinement, perfect equilibrium, strictly perfect equilibrium, restrictive per-

fect equilibrium, truly perfect equilibrium
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1 Introduction

Nash equilibrium is the most important solution concept in game theory, but many games

have multiple Nash equilibria and some of the equilibria may not be sensible. Selten (1975)
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refined the concept of Nash equilibrium by introducing the concept of perfect equilibrium

which is stable against slight perturbations in the equilibrium strategies. The idea of small

perturbations (trembling) was succeeded by many others, and enabled alternative solution

concepts, among others, proper equilibrium of Myerson (1978) and sequential equilibrium

by Kreps and Wilson (1982).

One dissatisfaction with those solution concepts based on perturbations is, however, that

trembling is arbitrary in the sense that the refined concepts require the existence of some

sequence of totally mixed strategies converging to the original Nash equilibrium but not

all sequences. Although the reasonableness of a certain Nash equilibrium crucially depends

upon which sequence to take, most of the solution concepts remain silent on the choice of a

sequence by selectively choosing a sequence which supports the equilibrium with ignoring all

the negative information from unfavorable sequences that do not support the equilibrium.

To resolve the arbitrariness, Okada (1981) proposed the concept of strictly perfect equi-

librium (SPE) which is stable against all slight perturbations of strategies. Although this

concept has not been widely used presumably due to the nonexistence problem, it has some

interesting properties. First, it is trivial to see that every strictly perfect equilibrium is a

perfect equilibrium. Also, van Damme (1983) showed that an essential equilibrium is strictly

perfect.1 It is also known that the strictly perfect equilibrium and the proper equilibrium,

two refinements of the perfect equilibrium, have no inclusion relation with each other. In

his book, van Damme (1987) raised this issue and instead showed that a strictly proper

equilibrium which is a refinement of a strictly perfect equilibrium is proper. Vermeulen and

Jansen (1996) provided a counterexample to show that a strictly perfect equilibrium need

not be proper, and a counterexample of the converse that a proper equilibrium need not be

strictly perfect is provided in González-Diás et al. (2010) (which was borrowed from van

Damme (1987)).

The concept of the strictly perfect equilibrium can be roughly defined as follows; A Nash

equilibrium σ∗ is strictly perfect if for given ϵ > 0 and for an arbitrary sequence {ηk} such that

0 < ηk(si) < ϵ for all i, there exists a totally mixed strategy equilibrium σk of the perturbed

game for all k such that σk → σ∗ as ϵ → 0. In this paper, we will argue that the concept of the

1The concept of the essential equilibrium which is stable against any arbitrary perturbations in payoffs

of players was introduced by Wu and Jiang (1962).
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strictly perfect equilibrium is too weak in the sense that it only requires the existence of some

sequence of totally mixed strategy equilibria of the perturbed game that converges to the

original Nash equilibrium. It requires an arbitrary sequence of perturbations but only some

sequence of equilibria in the perturbed games. Accordingly, any restriction on the sequence

of equilibria in the perturbed games refines the set of strictly perfect equilibria. Van Damme

(1987) proposed one such solution concept, which he calls strictly proper equilibrium by

imposing a restriction that the map of ϵ into an ϵ-perfect equilibrium is continuous. Kohlberg

(1981) independently proposed a similar solution concept which requires the equilibrium to

be the best response to any sequence of totally mixed strategies converging to it. However,

we show that the truly perfect equilibrium is a stronger concept than the strictly perfect

equilibrium. As such, if a strictly perfect equilibrium (SPE) is replaced by either strictly

proper equilibrium or truly perfect equilibrium, the counterexample of Vermeulen and Jansen

(1996) does not hold in the sense that the proposed equilibrium is neither truly perfect nor

strictly proper, although it is SPE. This is because it is based on the construction of a

particular sequence of totally mixed strategy equilibria in perturbed games to show that the

proposed equilibrium is SPE.

A perfect equilibrium was defined by two alternative but equivalent ways by Selten (1965).

One is a limit of a sequence of ϵ-perfect equilibria, and the other is a limit of a non-equilibrium

sequence. A proper equilibrium which was introduced by Myerson (1978) was originally

defined by a limit of ϵ-proper equilibria. However, properness can be also defined by a limit

of a non-equilibrium sequence. We provide an alternative definition for properness in terms

on a non-equilibrium sequence (satisfying some property) and show that the two definitions

for properness are equivalent. In fact, this alternative definition turns out to be very useful

in proving many inclusion relations among various perfectness-based solution concepts. A

truly perfect equilibrium is a limit of any unconstrained sequence of totally mixed strategies,

while a proper equilibrium is a limit of some constrained sequence. We will call a limit of

some or any constrained sequence of totally mixed strategies restrictive perfect equilibrium.

It is not difficult to see that the truly perfect equilibrium is a stronger concept than any

restrictive perfect equilibrium, since it is harder for all sequences to satisfy some condition

(being a best responses to the proposed equilibrium) than for some or all sequences with

some property to satisfy the condition. Since a proper equilibrium is a restrictive perfect
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equilibrium, it directly follows that every truly perfect equilibrium is proper.

The paper is organized as follows. A motivating example is presented in Section 2. In

Section 3, we provide the formal definition of a strictly perfect equilibrium (SPE) by Okada

and of a truly perfect equilibrium (TPE) by Kohlberg (1981). In Section 4, we prove some

properties of various solution concepts based on perfectness. Concluding remarks follow in

Section 5.

2 Motivating Example

We consider the counterexample provided by Vermeulen and Jansen (1996) to show that a

strictly perfect equilibrium need not be proper. The example is drawn in Table 1. Vermeulen

and Jansen claim that (s2, t4) is strictly perfect but not proper. We will show that this

equilibrium fails to satisfy the definition of TPE.

Consider a sequence of totally mixed strategies σk
1 = (ϵk1, 1 − ϵk1 − ϵk3, ϵ

k
3) where ϵk1 ≫ ϵk3.

This sequence clearly converge to s2. The expected payoffs of player 2 in the perturbed

games are

E[π2(σ
k
1 , t1)] = 3ϵk1

E[π2(σ
k
1 , t2)] = 3ϵk3

E[π2(σ
k
1 , t3)] = 2(ϵk1 + ϵk3)

E[π2(σ
k
1 , t4)] = 2(ϵk1 + ϵk3).

Since ϵk1 ≫ ϵk3, the best response of player 2 to σk
1 is t1. This implies that (s2, t4) is not TPE,

because t4 is not a best response to σk
1 for (ϵk1, σ

k
3) such that ϵk1 ≫ ϵk3.

The reason why (s2, t4) can be an SPE goes as follows. To player 2, t4 can be a best

response only if player 1 chooses s1 and s3 with similar probabilities. It is not a best response

to some mixed strategy of player 1 if player 1 chooses either s1 or s3 almost for sure; in that

case, player 2 will get almost 3 by choosing either t1 or t2 while he gets almost 2 by choosing

t4. To avoid this possibility, Vermeulen and Jansen picked a sequence of mixed strategies

of player 1, σk
1 = (ϵk1, 1 − 3ϵk1, 2ϵ

k
1) for perturbations ϵk = (ϵk1, ϵ

k
2, ϵ

k
3) such that ϵk1 > ϵk3 and

σk = (2ϵk3, 1− 3ϵk3, ϵ
k
3) such that ϵk1 < ϵk3. Note that if a sequence of perturbations converging

to 0 shifts from one regime (ϵk1 > ϵk3) to another (ϵk1 < ϵk3), σ
k moves discontinuously with
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respect to a change in (ϵk1, ϵ
k
3). Van Damme (1987) proposed a strict proper equilibrium

instead of TPE by imposing the requirement of continuity of the Nash sequence with respect

to perturbations.

The reason why (s2, t4) cannot be a proper equilibrium is clearer. Player 1’s choice of s2

given t4 can be justifiable only by high possibilities that player 2 makes mistakes of playing

t1 or t2. However, player 2 makes more mistakes of playing t3 because t3 is a better response

to player 1’s choice of s2 when the probabilities that player 1 makes mistakes of s1 and s3

are similar. Since s2 is not a best response to such a sequence of mixed strategies, (s2, t4)

is not TPE nor proper. This motivates us to reexamine the concept of TPE by Kohlberg

(1981) and compare it with other related concepts based on perfection.

3 Preliminaries

Consider a finite strategic-form game G = (N,S, π) where N = {1, 2, . . . , n}, S =
∏n

i=1 Si

and π(s) = (π1(s), . . . , πn(s)). A perturbation in G is a vector η = (η1, η2, . . . , ηn) such that,

(i) for each i ∈ N , ηi = (ηi(si))si∈Si
satisfies ηi(si) > 0 for all si ∈ Si and (ii)

∑
si∈Si

ηi(si) < 1.

Then, for a given scalar ϵ > 0, an ϵ-perturbed game of G, which will be denoted by G(ϵ),

can be defined by G(ϵ) = (N,Σ(ϵ), π) where Σi(ϵ) = {σi ∈ Σi | σi(si) ≥ ηi(si),∀si ∈ Si} for

some ηi(si) such that 0 < ηi(si) ≤ ϵ and Σ(ϵ) =
∏

i∈N Σi(ϵ).

Selten (1965) defines a perfect equilibrium by a limit of Nash equilibria in a sequence of

perturbed games. Formally, a perfect equilibrium is defined by a limit of some sequence of

ϵ-constrained equilibria as ϵ → 0, where an ϵ-constrained equilibrium for a given ϵ > 0 is a

Nash equilibrium of a perturbed game G(ϵ) for some perturbation η such that ηi(si) ∈ (0, ϵ)

for all si ∈ Si and for all i ∈ N .2 Similarly, Myerson (1981) defines an ϵ-perfect equilibrium

and give an alternative definition of a perfect equilibrium as a limit of ϵ-perfect equilibrium.

Definition 1 (Myerson) A totally mixed strategy profile σϵ is an ϵ-perfect equilibrium if

and only if for any si, s
′
i ∈ Si,

πi(si, σ
ϵ
−i) < πi(s

′
i, σ

ϵ
i ) =⇒ σϵ

i (si) ≤ ϵ. (1)

2We borrow this term from Fudenberg and Tirole (1991).
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Due to Selten (1965) and Myerson (1978), we have three alternative definitions of per-

fectness.

Theorem 1 (Selten, Myerson) The followings are equivalent; (i) σ is a perfect equilib-

rium, i.e., σ = limϵ→0 σ
ϵ where σϵ is an ϵ-constrained equilibrium. (ii) There exists a sequence

of totally mixed strategies {σk} such that σk → σ and σi is a best response to σk
−i for all k.

(iii) σ = limϵ→0 σ
ϵ where σϵ is an ϵ-perfect equilibrium.

The proof of equivalence is omitted, since it can be found in standard textbooks on game

theory. See, for example, Fudenberg and Tirole (1991).

We now introduce two closely related refinements of a perfect equilibrium, strict perfect-

ness by Okada (1981) and true perfectness by Kohlberg (1981).

Definition 2 (Okada) A Nash equilibrium σ∗ = (σ∗
1, . . . , σ

∗
n) for G is a strictly perfect

equilibrium of G if for any arbitrary sequence of perturbations ηk = (ηk1 , . . . , η
k
n)}∞k=0 such

that 0 < ηki < ϵk and ϵk → 0 as k → ∞, there exists a sequence of totally mixed strategy

Nash equilibria σk of the game G(ϵk) such that σk → σ∗ as k → ∞.

Roughly speaking, strict perfectness requires an equilibrium to be a limit of Nash equilibria

in all sequences of games perturbed in a neighborhood of the equilibrium. It is clear that

the concept of the strong strictly perfect equilibrium (SPE) is stronger than the concept

of the perfect equilibrium (PE) because SPE requires a sequence of Nash equilibria for all

perturbations while PE requires a sequence of Nash equilibria for some perturbations.

Definition 3 (Kohlberg) A Nash equilibrium σ∗ = (σ∗
1, . . . , σ

∗
n) for G is a truly perfect

equilibrium of G if for any sequence of totally mixed strategy profiles σk such that σk → σ∗,

πi(σ
∗
i , σ

k
−i) ≥ πi(si, σ

k
−i) for all si ∈ Si and for all i ∈ N .

Kohlberg (1981) introduced a similar notion of so-called truly perfect equilibrium which

requires a best response to every sequence of totally mixed strategies converging to it. It is

also clear that the concept of the truly perfect equilibrium (TPE) is stronger than the concept

of the perfect equilibrium (PE) because TPE requires all sequences of mixed strategies

converging to it while PE requires some sequence of mixed strategies converging to it.

In the next section, we will examine the relation among the three solution concepts.
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4 Results

Some may wonder whether SPE and TPE are equivalent just as the two definitions of a

perfect equilibrium are equivalent. However, it turns out that the equivalence result of the

some sequence version is not carried over to the all sequence version. That is, we can show

that every truly perfect equilibrium is strictly perfect, but the converse does not hold.

Theorem 2 Every truly perfect equilibrium is strictly perfect.

Proof. Let σ∗ be a truly perfect equilibrium. For given ϵ > 0 and for any arbitrary sequence of

perturbations ηk = (ηki ) such that ηki (si) ∈ (0, ϵ), take a sequence of totally mixed strategies

σηk

i (si) =

{
ηk(si) < ϵ if si ̸∈ supp(σ∗

i )

σ∗
i (si)−

∑
si ̸∈supp(σ∗

i )
ηk(si)/ni if si ∈ supp(σ∗

i )
(2)

where supp(σ∗
i ) = {si ∈ Si | σi(si) > 0} and ni = |supp(σ∗

i )|. By definition of TPE, σ∗
i is a

best response to any sequence of totally mixed strategies σk
−i such that σk

−i → σ∗
−i, in partic-

ular, σηk

−i, for all i ∈ N . Let B(σ−i) and NB(σ−i) be the set of pure strategies of player i that

are best responses (not best responses, resp.) to σi. Then, supp(σ
∗
i ) ⊂ B(σηk

−i) by the above

best-response argument. Note that σηk

i (si) < ϵ for any si ∈ NB(σηk

−i) ⊂ Si\supp(σ∗
i ). There-

fore, σηk is an ϵ-perfect equilibrium by Definition 1. Since

∑
si ̸∈supp(σ∗

i
) η

k(si)

ni
< |Si|−ni

ni
ϵ → 0

as ϵ → 0, σ∗ = limϵ→0 σ
ηk . Since σ∗ is perfect for any perturbation ηk, it is strictly perfect.

∥

The example of Vermeulen and Jansen (1996) which was provided in Section 2 can be a

counterexample of the converse claim. In the example, (s2, t4) is a strictly perfect equilibrium,

but not truly perfect as we already argued.

As is well known, Myerson (1978) introduced the concept of the proper equilibrium

which is a refinement of the perfect equilibrium. Roughly speaking, it requires perturbations

(mistakes) to satisfy an additional requirement such that a more costly mistake will occur

with a probability of smaller order than the probability of a less costly one.

Definition 4 For a fixed scalar ϵ > 0, a totally mixed strategy profile σϵ is an ϵ-proper

equilibrium of a game G if for si, s
′
i ∈ Si,

πi(si, σ
ϵ
−i) < πi(s

′
i, σ

ϵ
i ) =⇒ σϵ

i (si) ≤ ϵσϵ
i (s

′
i). (3)
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A proper equilibrium of G is any limit of σϵ, i.e., σ∗ = limϵ→0 σ
ϵ.

A limit of any sequence of ϵ-proper equilibria as ϵ → 0 is proper. Note that this definition

of properness does not explicitly specify the Nash equilibrium condition of the ϵ-perturbed

game unlike the definition of perfectness. This is because the Nash concept is embedded in

the requirement of lower-order mistakes for better responses. As the definition of perfectness,

the definition of properness can be stated in terms of a sequence of totally mixed strategies.

Theorem 3 σ∗ is a proper equilibrium if and only if there exists a sequence of totally mixed

strategies {σk} such that σk → σ∗, σ∗
i is a best response to σk

−i for all k and the sequence

{σk} satisfies the property [P] where, for si, s
′
i ∈ Si and for any i ∈ N ,

πi(si, σ
k
−i) < πi(s

′
i, σ

k
−i) =⇒ σk

i (si) ≤ ϵkσk
i (s

′
i), for some ϵk > 0 such that ϵk → 0. [P ]

Proof. (=⇒) Let σϵk be an ϵk-proper equilibrium for a sequence ϵk → 0 and take σk = σϵk .

Since {σk} clearly satisfies the property [P] and σk → σ∗, it remains to show that σi is a

best response to σk
−i for all k. For si ∈ supp(σ∗

i ), we know that σk(si) → σ∗(si) > 0, so that

there exists d > 0 such that σk(si) ≥ d for any k ≥ k1 for some large k1. Since ϵk → 0,

there exists large k2 such that d > ϵk for all k ≥ k2. Take k̄ = max{k1, k2}. Then, for all

si ∈ supp(σ∗
i ), σ

k(si) > ϵk for all k ≥ k̄. Since σk is ϵk-perfect, si is a best response to σk
−i

for all k ≥ k̄ by Definition 1. Therefore, σ∗ is a best response to σk
−i for all k ≥ k̄.

(⇐=) Take {ϵk} and {σk} that satisfy [P], ϵk → 0 and σk → σ∗. Then, for any k, σk

satisfies [P] so that

πi(si, σ
k
−i) < πi(s

′
i, σ

k
i ) =⇒ σk

i (si) ≤ ϵkσk
i (s

′
i),

implying that σk is an ϵk-proper equilibrium. Therefore, σ∗ = limϵk→0 σ
k is proper. ∥

Property [P] simply says that each player’s totally mixed strategy is required to assign

lower probability to the pure strategy yielding him a lower expected payoff. Due to Theorem

3, we can easily compare the set of truly perfect equilibria and the set of proper equilibria.

Note that a truly perfect equilibrium must satisfy the following two conditions; (i) it is a

limit of any sequence of totally mixed strategies that converge to it and (ii) it must be a

best response to any such sequence, while a proper equilibrium must satisfy the conditions;

(i) it is a limit of some sequence of totally mixed strategies that converge to it and satisfy
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some property [P], (ii) it must be a best response to some such sequence. It is obvious that

it is harder for the conditions for a truly perfect equilibrium to be satisfied. Hence, a truly

perfect equilibrium must be proper. This logic can be extended to any other property than

[P]. For example, if we replace the condition that πi(si, σ
k
−i) < πi(s

′
i, σ

k
i ) in property [P] of

Theorem 3 by the condition that πi(si, σ
∗
−i) < πi(s

′
i, σ

∗
i ), the corresponding solution concept

is called weakly proper equilibrium. (See Definition 2.3.1 of van Damme (1991).) Notice that

this condition is less restrictive than property [P], because πi(si, σ
∗
−i) < πi(s

′
i, σ

∗
i ) implies

that πi(si, σ
k
−i) < πi(s

′
i, σ

k
i ) but not vice versa.3 Thus, it directly follows that every proper

equilibrium is weakly proper but a weakly proper equilibrium is not necessarily proper. It

also follows that every weakly proper equilibrium is perfect because the perfect equilibrium

does not impose any restriction on (σk)∞k=1 such that property [P]. We will call a limit of any

or some sequence of totally mixed strategies satisfying some property a restrictive perfect

equilibrium (RPE). A weakly proper equilibrium is also a restrictive perfect equilibrium.

Then, we have the following general result.

Theorem 4 Every truly perfect equilibrium is a restrictive perfect equilibrium (RPE).

Proof. Obvious.

Corollary 1 Every truly perfect equilibrium is proper.

Now, we want to propose a new solution concept, what we call a truly proper equilibrium.

We can define a truly proper equilibrium analogously as a truly perfect equilibrium is defined.

That is, a truly proper equilibrium is defined by a limit of any sequence of totally mixed

strategies satisfying the property [P] to which it is a best response. Formally,

Definition 5 σ is a truly proper equilibrium if and only if for any sequence of totally mixed

strategies {σk} such that σk → σ, σi is a best response to σk
−i for all k and the sequence {σk}

satisfies the property P where, for si, s
′
i ∈ Si and for any i ∈ N ,

πi(si, σ
k
−i) < πi(s

′
i, σ

k
i ) =⇒ σk

i (si) ≤ ϵkσk
i (s

′
i), for some ϵk > 0 such that ϵk → 0. [P ]

Since a truly proper equilibrium is also a restrictive perfect equilibrium, we have

3Since limk→∞ σk
i = σ∗

i , πi(si, σ
k
−i) < πi(s

′
i, σ

k
i ) implies that πi(si, σ

∗
−i) ≤ πi(s

′
i, σ

∗
i ).
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Corollary 2 Every truly perfect equilibrium is truly proper.

Note that a truly perfect equilibrium implies a truly proper equilibrium, whereas a proper

equilibrium implies a perfect equilibrium, since the conditions for a truly perfect equilibrium

is more stringent than those for a truly proper equilibrium.

Some may suspect that (s2, t4) in the example provided in Table 1 may be truly proper,

even if it is not truly perfect. To check this, pick any one sequence satisfying [P] among

the whole set of sequences of totally mixed strategies that converge to (s2, t4), (σ
k
1 , σ

k
2) =

((ϵk1, 1− ϵk1 − ϵk3, ϵ
k
3), (δ

k
1 , δ

k
2 , δ

k
3 , 1− δ)) where δ =

∑3
i=1 δ

k
i . Given this strategy combination,

the expected payoffs of player 1 are computed as

E[π1(s1, σ
k
2)] = δk1

E[π1(s2, σ
k
2)] = 7(δ1 + δ2)− 3δ3

E[π1(s3, σ
k
2)] = δk2 .

Suppose δ1 ≫ δ2. Then, π1(s2, σ
k
2) > π1(s1, σ

k
2) > π1(s3, σ

k
2). Thus, property [P] requires

that σk
1(s3) < ϵkσk

1(s1) < (ϵk)2σk
1(s2), implying that ϵk1 ≫ ϵk3. This in turn implies that t1

(not t4) would be the best response of player 2 to this perturbed mixed strategies. This

concludes that (s2, t4) is not truly proper, either.

It is known that the proper equilibrium always exists, but the truly perfect equilibrium

need not exist, because it is a refinement of the strictly perfect equilibrium the existence

of which is not guaranteed. (See Figure 1.5.5 of van Damme (1991) for an example of the

non-existence.) Then, could we recover the existence by slightly relaxing the concept of

the truly perfect equilibrium to the truly proper equilibrium by allowing only the totally

mixed strategies satisfying [P] property? Unfortunately, the answer is no. It is not difficult

to construct an example in which the truly proper equilibrium does not exist, although

the proper equilibrium exists. Consider a strategic-form game provided in Table 2. This

game has the unique Nash equilibrium (s2, t2), and this is indeed proper. To see this,

consider a sequence of totally mixed strategies that converge to σ∗ = (s2, t2), {(σk
1 , σ

k
2)}∞k=1 =

{(ϵk1, 1 − ϵk1 − ϵk2, ϵ
k
2), (δ

k
1 , 1 − δk1 − δk2 , δ

k
2)}∞k=1 where ϵki , δ

k
i ∈ (0, 1), ϵki → 0 and δki → 0. The
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expected payoffs of player 1 are as follows;

E[π1(s1, σ
k
2)] = 2− δk1 − δk2

E[π1(s2, σ
k
2)] = 3δk1 − 3δk2

E[π1(s3, σ
k
2)] = 2− δk1 − δk2 .

Since player 1 is indifferent between s1 and s3, property [P] does not impose any restriction

on ϵk1 and ϵk2. On the other hand, the expected payoffs of player 2 can be computed as follows;

E[π2(σ
k
1 , t1)] = 2(1− ϵk1 − ϵk2) + 2ϵk2

E[π2(σ
k
1 , t2)] = ϵk1 + 3(1− ϵk1 − ϵk2)

E[π2(σ
k
1 , t3)] = 3(1− ϵk1 − ϵk2) + ϵk2.

Thus, t2 is a best response of player 2 if ϵk1 ≫ ϵk2, while t3 is if ϵk2 ≫ ϵk1. This implies that

(s2, t2) is not truly proper; hence, no truly proper equilibrium in this game, since it is the

unique Nash equilibrium.

5 Concluding Remarks

In this paper, we showed that every truly perfect equilibrium is strictly perfect and that

every truly perfect equilibrium is proper by proving that every truly perfect equilibrium is

restrictively perfect. We also proposed the concept of truly proper equilibrium and that

every truly perfect equilibrium is truly proper, but it does not need to exist, either. We look

forward to a less stringent solution concept than the truly perfect equilibrium and even the

truly proper equilibrium that can guarantee existence.
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II

t1 t2 t3 t4

s1 (1, 3) (0, 0) (0, 2) (0, 2)

I s2 (7, 0) (7, 0) (−3, 0) (0, 0)

s3 (0, 0) (1, 3) (0, 2) (0, 2)

Table 1: (s2, t4) is SPE but not TPE
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II

t1 t2 t3

s1 (1, 0) (2, 1) (1, 0)

I s2 (2, 2) (3, 3) (0, 3)

s3 (1, 2) (2, 0) (1, 1)

Table 2: The truly proper equilibrium need not exist.
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