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Abstract

The debasements in medieval Europe were often followed by large
minting volume and seigniorage profits, constituting the so-called de-
basement puzzle. In the meanwhile, old heavier coins were observed
to co-circulate with new lighter coins, casting a doubt on Gresham’s
law. Here we offer a theory of coinage that appeals to divisibility and
portability of commodity money. Coins are distinguished as different
denominations by their metal contents. In a parameterized model, we
find that the minting volume does surge following debasement while
Gresham’s Law may or may not hold.
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1 Introduction

In the medieval Europe, debasements of coins—reduction of the weight or
fineness of contained precious metal such as silver or gold in coins—are not
rare. When there was a debasement of a sort of coins, a person could take old
heavier-weight coins or bullion to a mint for exchange of new lighter-weight
coins. The difference between metal contained in his old coins or bullion and
metal contained in his new coins is seigniorage collected by the mint. By the
conventional wisdom, what motivated a king or queen to order the debase-
ment is fiscal consideration, i.e., for seigniorage collection (cf. Spufford [18]);
recently Sargent and Velde [16] provide an influential monetary view, i.e., the
debasement as a means to resolve shortage in small coins. Whatever motiva-
tions may be, debasements are puzzling because they actually worked, i.e.,
induced voluntary surrendering of metal and huge minting volumes, hence,
seigniorage to mints for new coins. Indeed, Rolnick, Velde, and Weber [14]
report the following debasement puzzle:

“they [the medieval debasements] were followed by unusually large
minting volumes and by increased seigniorage; old and new coins
circulated concurrently; and, at least some of the time, coins were
valued by weight. These facts constitute a puzzle because debase-
ments provide no additional inducements to bring [old] coins to
the mint.”1

The medieval debasements are also the origin of Gresham’s law, which says
bad money drives out good money—new lighter-weight coins are bad and
old heavier-weight are good.2 Despite its renounced status in economics,
Gresham’s law is not without controversy for its empirical validity.3 The

1According to [14], in the Great Debasement, minting activity increased by a factor of
2.8, and the Crown raised a quarter of its revenues through the mint.

2Fetter [3] describes the history of how a statement regarding debasement and the
exchanges by Gresham in 1558 (in a letter to Queen Elizabeth) was recovered and fur-
ther reformed to a fundamental and universal law in economics as Gresham’s law in the
nineteenth century. The law is also referred to as the Law of Oresme, Copernicus, and
Gresham in recognizing the other independent medieval contributors, and it is also even
related to far more ancient writing such as The Frogs of Aristophanes (c.f. Balch [1]).

3For example, Rolnick and Weber [13] document a few exceptions to Gresham’s law
in the nineteenth-century U.S. and seventeenth-century English with bimetallism; these
exceptions are further disputed by Greenfield and Rockoff [3]. In a more recent study,
Li [7] argues that Gresham’s law was rather ineffective following the sixteenth-century
English Great Debasement.
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debasement puzzle seems suggestive for why Gresham’s law may be contro-
versial: bad money did drive out some good money (old coins were brought
to the mint), but bad money did not drive out all good money.

Here we offer a theory of coinage and use it to understand the debasement
puzzle and clarify validity of Gresham’s law in the debasement context. Our
theory starts from a simple observation: coins with different metal contents
constitute a denomination structure. But why do multiple denominations
matter at first place? Following Lee, Wallace, and Zhu [6], we appeal to
indivisibility of money and costs to carrying monetary objects. Both factors
make perfect sense for the medieval commodity-money system: coins cannot
be too small in size and too low in finiteness (cf. Redish [10, pp.18-24]), and
it is burdensome to carry many coins.

Formally, we adapt the model in [6] for commodity money. Coins are
distinguished as different denominations by their metal contents but not
their legal-tender values. New lighter coins introduced by a debasement of
one sort of coins reduce the indivisibility problem, while old heavier coins
bear less carrying costs. There is no obvious reason that the metal contents
of old and new coins alone can determine whether people desire new coins
or whether new coins drive out old coins. Intuitively, a limited supply of
metal and a great degree of debasement may lead to a strong indivisibility-
reducing effect and, hence, make new coins much desirable. To deliver more,
the model is parameterized and solved by numerical methods. When the
pre-debasement economy is in a steady state, debasement does induce a large
minting value and the old and new coins do circulate concurrently for years.
Even asymptotically Gresham’s law is not universal.

There is a small literature that tackles the debasement puzzle. In a cash-
in-advance model, Sargent and Smith [15] assume that good and bad coins
circulate by tale and show that in such an equilibrium (if it exists) people
bring some good coins into the mint to melt.4 In matching models with one
unit upper bound on coin holdings, Velde, Weber, and Wright [20] and Li [8]
use side payments offered by mints as incentives for people to bring metal
for new coins. None of these three models leaves room for new and old coins

4Built on [15] and adding an extra penny-in-advance constraint, Sargent and Velde [16]
explain recurrent debasements as means to deal with recurrent shortage in small coins.
On the empirical ground, Rolnick, Velde, and Weber [14] argue that by-tale circulation
violates facts documented in the debasement puzzle, and that by-tale circulation would
have induced a much larger minting volume than observed (while the minting volume
following a debasement jumped, only a portion of old coins were minted).
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to serve as different denominations. Each of these models does predict that
Gresham’s law is not universal and gives a distinct reason for the law to hold
at some parameter space—asymmetric information in [20], the government
transaction policy in [8], and the circulation-by-tale assumption in [15].

2 The basic model

To ease exposition, the basic model only describes the pre-debasement econ-
omy.

2.1 The physical environment

The physical environment has commodity money with multiple denomina-
tions. Our formulation for commodity money follows Velde and Weber [19],
which is meant to capture the idea that money stock is not constant due to
hoarding, international flow, and industry use of metal.5 Our formulation
for the denomination structure follows Lee, Wallace, and Zhu [6].

Time is discrete, dated as t ≥ 0. There is a unit measure of infinitely lived
agents. There is a durable commodity, called silver. Silver is not perfectly
divisible; its smallest unit is normalized as unity. Silver has monetary and
non-monetary uses. For non monetary use, silver can be costlessly converted
into and back from a product, called jewelry, whose smallest unit is an integer
η; jewelry is measured by its silver content. For monetary use, there is a
mint which makes coins by silver. There are K types of coins and we let
m = (m1, , ...,mK) represent the denomination structure, where mk is silver
content in a type-k coin and mk > mk−1. There is an exogenous (integer)
bound on an agent’s silver wealth, denoted B. Silver has a fixed stock M and
the start-of-date-0 distribution of silver among agents, denoted π0, is public
information.

Letting Y =
∏K

k=1{0, 1, ..., B/mk} and X = {0, 1, ..., B/η}, then (y, x) ∈
Y × X denotes an agent’s generic portfolio of wealth in silver, where y =
(y1, y2, ..., yK) is his holdings of coins (he holds yk units of type-k coins) and
x is his holding of jewelry. When an agent with the portfolio (y, x) meets the
mint (at the timing specified below), he can play a lottery σ ∈ Γ(y, x) with

5For the same purpose, we may alternatively adopt the formulation in Sargent and
Wallace [17]. Both of these two formulations differ from the convention in matching
models that treats commodity money as Lucas trees.
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the mint, where

Γ(y, x) = {σ :
∑

(y′,x′)∈Y×X(m · y′ + ηx′)σ(y′, x′) = m · y + ηx} (1)

is a set of probability measures on Y ×X; by playing the lottery, the agent’s
portfolio becomes (y′, x′) with the probability σ(y′, x′) and pays the minting
costs for coins (in the form of disutility) as specified below.6

Each date consists of two stages, 1 and 2. For an agent who starts the
date with the portfolio (y, x), he can play a lottery σ ∈ Γ(y, x) with the mint
at stage 1. At stage 2, agents head into a decentralized market where they
are randomly matched in pairs. Jewelry cannot be carried into the market
while coins can. There is a cost to carrying coins (in the form of disutility)
as specified below. In each pairwise meeting, with equal chance one agent
becomes a buyer and another becomes a seller. The seller can produce a
perishable good, called rice, which is only consumed by the buyer. Trading
histories are private so that credits between the two agents are ruled out and,
in particular, the buyer must pay the seller some coins for exchange of rice.
In their coins-for-rice trade, the buyer makes a take-it-or-leave-it offer to the
seller. Each agent’s wealth portfolio is observed by his meeting partner.

If an agent starts with (y, x) and ends with (y′, x′) at stage 1, and if he
consumes qb ≥ 0 of rice (when he is a buyer) and produces qs ≥ 0 (when he
is a seller) at stage 2, then his realized utility in that date is

u(qb)− qs + υ(ηx′)−
∑

kφk max{y′k − yk, 0} −
∑

kγky
′
k,

where φk > 0 and γk > 0 are the unit minting cost and carrying cost for
type-k coins, respectively. By the formulation, the agent does not get direct
utility from jewelry, coins, or pure silver in stage 1, and he gets direct utility
from jewelry but no coins or pure silver at stage 2. The utility functions u
and υ satisfy u′, υ′ > 0, u′′, υ′′ < 0, υ(0) = u(0) = 0, and u′(0) = ∞. The
agent maximizes expected discounted utility with discount factor β ∈ (0, 1).

6In (1) and below, a ·b denotes the inner produce of vectors a and b. The set of lotteries
in (1) differs from its counterpart in [6]. A lottery in the latter preserves the individual
(nominal) wealth in each portfolio realization. As we do not follow [6] to assume that
mk/m1 is an integer, it is too restrictive to let lotteries preserve the individual wealth
in silver. For example, if K = 2, m2/m1 = 1.4, and one’s start-of-stage-1 portfolio is
(y1, y2, x) = (0, 1, 0.5), then such lotteries give him little room to change his portfolio.
Technically, lotteries satisfying (1) also imply concavity of some value functions.
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2.2 Equilibrium

To define equilibrium, let πt and θt denote two probability measures on Y×X,
where πt(y, x) and θt(y, x) are the fractions of agents with the wealth portfolio
(y, x) at the start and at the end of date-t stage 1, respectively. Let wt and ht
denote two expected discounted utility function on Y×X, where wt(y, x) and
ht(y, x) pertain to expected discounted utility for an agent whose portfolio
is (y, x) at the start and at the end of date-t stage 1, respectively.

In terms of ht, the stage-1 portfolio-choice problem for an agent who holds
(y, x) at the start of date-t stage 1 can be expressed as

g(y, x, ht) (2)

= max
σ∈Γ(y,x)

∑
(y′,x′)[ht(y

′, x′) + υ(ηx′)−
∑

kφk max{y′k − yk, 0}]σ(y′, x′).

Let ∆1[y, x, ht] be the set of maximizers for the problem in (2). In terms of
wt+1, the trade in a pairwise meeting between a buyer with (yb, xb) and a
seller with (ys, xs) can be described as follows. Let

f(yb, xb, ys, xs, wt+1) = max
(q,l)

[u(q) + βwt+1(yb − ι, xb)] (3)

subject to

−q + βwt+1(ys + ι, xs) ≥ βwt+1(ys, xs), ι ∈ L(yb, ys). (4)

In (4), L(yb, ys) is the set of feasible coins transfers from the buyer to the
seller, that is,

L(yb, ys) = {ι ∈ Y : ι = ιb − ιs, ιb, ιs ∈ Y,

ιb,k ≤ yb,k, ιs,k ≤ ys,k}. (5)

Let ∆2[yb, xb, ys, xs, wt+1] denote the set of measures that represent all ran-
domizations over the optimal transfers of coins for the maximization problem
in (3).

Given ht, the function wt satisfies

wt(y, x) = g(y, x, ht). (6)

Given wt+1 and θt, the function ht satisfies

ht(y, x) = 0.5βwt+1(y, x) + 0.5
∑

(y′,x′)θt(y
′, x′)f(y, x, y′, x′, wt+1)−

∑
kγkyk.

(7)
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Given πt, the measure θt satisfies

θt(y, x) =
∑

(y′,x′)πt(y
′, x′)σ(y, x) (8)

for some σ ∈ ∆1[y, x, ht]. Given θt, the measure πt+1 satisfies

πt+1(y, x) =
∑

(yb,xb,ys,xs)θt(yb, x)θt(ys, xs)[δ(y, x) + δ(yb − y + ys, x)] (9)

for some δ ∈ ∆2[yb, xb, ys, xs, wt+1], where δ(y, x) is the proportion of buyers
with (yb, xb) who leave with (y, x) after meeting sellers with (ys, xs).

Definition 1 Given π0, a sequence {wt, θt, πt+1}∞t=0 is an equilibrium in the
pre-debasement economy if it satisfies (2)-(9) with Γ(y, x) given by (1). An
equilibrium is a monetary equilibrium if η

∑
x x·θt(0, x) < M for some t. A

triple (w, θ, π) is a steady state if {wt, θt, πt+1}∞t=0 with wt = w, θt = θ, and
πt = π for all t is an equilibrium.

3 Debasement

To keep exposition simple, we consider the situation that only one of the exist-
ing K types of coins, say, type j, is debased. That is, the mint provides type-j
coins only with debased silver content and it remains to provide the other
K-1 types coins with their pre-debasement silver contents. While the mint
does not provide type-j coins with pre-debasement silver content any more,
the existing non-debased type-j coins can still be hold by agents. To keep
consistency of notation, let the vector (m1, , ...,mK) denote silver contents in
types of coins that are provided by the mint after debasement such that mk >
mk−1, let mo denote silver content in a pre-debasement type-j coin, and let
m = (mo,m1, , ...,mK). Letting Y = {0, 1, ..., B/mo}×

∏K
k=1{0, 1, ..., B/mk}

with a generic element y = (yo, y1, y2, ..., yK), then when an agent with port-
folio (y, x) ∈ Y ×X meets the mint, the set of lotteries he plays with the
mint is

Γ(y, x) = {σ :
∑

(y′,x′)∈Y×X(m · y′ + ηx′)σ(y′, x′) = m · y + ηx, (10)

σ{(y′, x′) ∈ Y ×X : y′o ≤ yo}}.

Compared with the set of lotteries in (1), the set of lotteries in (10) has
an additional constraint y′o ≤ yo, saying that the mint does not provide old
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coins any more. With Γ(y, x) defined in (10), all other descriptions of the
pre-debasement environment and equilibrium are carried over without any
change. In particular, we have the following definition parallel to Definition
1.

Definition 2 Given π0, a sequence {wt, θt, πt+1}∞t=0 is an equilibrium in the
pre-debasement economy if it satisfies (2)-(9) with Γ(y, x) given in (10). An
equilibrium is a monetary equilibrium if

∑
xθt(0, x) < M for some t. A triple

(w, θ, π) is a steady state if {wt, θt, πt+1}∞t=0 with wt = w, θt = θ, and πt = π
for all t is an equilibrium.

4 Existence results

For existence of a monetary equilibrium, from now on we maintain a simple
sufficient condition

0.5
B −M
B

u[
β

1− β
(υ(B)− υ(B −m1))] ≥ (1+

0.5β

1− β
)[υ(B)−υ(B−m1)]+φ1+γ1.

(11)
What (11) requires is that the upper bound on silver wealth is not too strict,
the smallest coin is not too large, and the minting and carrying costs of the
smallest coin are not too great.

Proposition 1 (i) For any given π0 there exists a Definition-1 monetary
equilibrium {wt, θt, πt+1}∞t=0 such that wt is concave, all t. (ii) There exists a
Definition-1 monetary steady state (w, θ, π) such that w is concave.

Proof. All proofs are in the appendix.

Analogously, we have the following results for the post-debasement econ-
omy.

Proposition 2 (i) For any given π0 there exists a Definition-2 monetary
equilibrium {wt, θt, πt+1}∞t=0 such that wt is concave, all t. (ii) There exists a
Definition-2 monetary steady state (w, θ, π) such that w is concave.

We analyze the economy’s response to a debasement by two related ap-
proaches. One approach is through the long-run comparative statics; that
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is, we compare a Definition-1 steady state that is associated with the pre-
debasement economy and a Definition-2 steady state that is associated with
the post-debasement economy. Another approach is through the direct dy-
namic process; that is, we let the pre-debasement economy be in a Definition-
1 steady state (w, θ, π) and let the dynamic process following the debasement
be a Definition-2 equilibrium whose π0 is implied by π. Both approaches are
carried out numerically in the next section.

5 Response to a debasement: numerical analysis

In this section we use numerical methods to carry out the two approaches
indicated in the end of the last section. For illustrative purposes, we use a
denomination structure that simplifies the computation while preserve the
important features of the model. We begin with parameterization and then
turn to computational details.

5.1 Parameterization

We normalize the smallest denomination as m1 = 1. For the basic model, we
start with two denominations (hence K = 2) and set the larger denomination
as m2 = 6 , so that there is enough space between m1 and m2 for us to
examine the different scenarios wherem2 is debased with different magnitude.

For the total stock of silver, we set M = 8 so that the per capital wealth
is enough to support the large coin used as money in pairwise meeting7.

For the upper bound on silver wealth, we find that B = 3 works fine and
making it larger will not change the result much.

For the smallest unit of jewelry η, we identify it with the most common
and smallest measure of precious metal, troy ounce, which weighs at 31 grams.
On the other hand, the per capita silver wealth in medieval ranged from 30
gram to 90 gram. So we set η close to M . In order to reduce the dimension,
we increase it slightly and set η = 10 > M . As is showed later, setting
η = M = 8 will not have significant effect on results.

We set the length of per period as a quarter, and hence the discount rate
β = 0.975, implying an annual discount rate of 10%8.

7If M is too small, m2 will mostly be used as store of value rather than medium of
exchange. On the other hand, a M too large will increase the computing burden

8There are a few papers (e.g. Kimball [4]) that discuss the medieval peasants’ utility
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u (q) υ (x) β m1 m2 η

Main setting q1−σ

1−σ εx
1−σx

1−σx 0.975 1 6 10

Alternatives {0.8, 2} {4, 8} 8

Table 1: Summary of model specifications and parameter choices.

We assume that the utility function for rice and jewelry take the form
u(q) = q1−σ/ (1− σ) and υ(x) = ε · x1−σx/ (1− σx), with σ, σx ∈ (0, 1) and
ε ∈ (0, 1). We mainly focus on the case of σ = σx = 0.5 and ε = 0.015.

For the minting cost (φ1, ..., φK), we assume that φk = υ (ζk), where ζk
represents the brassage (in terms of silver) for minting one unit of coin k.
According to Sargent and Velde [16, pp. 50-52], the medieval mints typically
charged a brassage which was concave in the size (metal content) of the
coin, and we follow Lee and Wallace [5] in using square root to capture this
concavity. The historical data provided by Sargent and Velde [16, pp. 51]
shows that the brassage for coin with silver content roughly at 1 gram ranged
from 2 mg to 9 mg, or 2% to 9%. And we take 4%, so ζk = 0.04

√
mk.

As for (γ1, ..., γK), it is difficult to directly pin down some numerical value
to capture the physical inconvenience, e.g. sorting and counting, incurred
by carrying the coins. However, one alternative is to re-interpret γ as the
disutility associated with the loss or depreciation of coins, we have γk =
υ (L ·mk), where L is the per period loss rate. Based on the depreciation
rate estimated by Patternson [9], we set L = 0.0025. Constructed this way,
γk will be increasing and concave in k. A variation we shall consider in our
exercises will be letting γk identical to all denominations, i.e. γk = γ. This
is to give prominence to large coin’s advantage (few coins) while minimize
its disadvantage (weight per coin). For a meaningful comparison, we set
γ ≡ υ (L ·m1).

In Table 1 we summarize the parameter choices, and the alternative
choices to be discussed in next sections.

discount rate. Although their estimates vary, all argue that medieval peasants had utility
discount rate higher than ours. Here, our choice of a β associated with annual discount
rate of 10% is in line with Lee and Wallace [5], who also focus on medieval monetary
issues.
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5.2 Pre-debasement and post-debasement steady states

Here we compute Proposition-1(ii) steady state and Proposition-2(ii) steady
state. We cannot prove uniqueness or local stability of such a steady state.
But given our choice of parameters, our algorithm converges to the steady
state we find out regardless of the initial conditions. Details about the algo-
rithm are given in the appendix.

We first look at a Proposition-1(ii) steady state with two denominations
and for a comparison made below, a Proposition-1(ii) steady state with only
one small denominations. In Table 2 we consider several scenarios for two de-
nominations with variation in some parameters, and report several statistics
in four categories. The basic model corresponds with the main parameter
settings in table 1. Under Total Stock, we record the total stock of different
coins and jewelry (in pieces). Under Pairwise Meeting, we record the total
number of pairs between which non-trivial trades take place (with a total of
0.5 matched pairs per period); avg pay and avg output is the average net
payment in silver and average output among these pairs. Under Circulation,
we have the number of coins (in pieces) that changes hands during each pe-
riod; the larger the figure, the more often the coin is used as a medium of
exchange. Finally, we report the minting volume for each coin. Note that
when in steady state, the melting volume equals the minting volume so as to
maintain a constant aggregate portfolio.

A few observations about the two-denomination variations are now in
order. First, with a uniform carrying cost, there exist more large coins than
in the case of a concave γ. Second, when the silver content of the large
coin m2 is smaller, people will hold more large coins because they are more
affordable and more useful in transactions, as is manifested by its increased
circulation volume. The effect of m2 on the pairwise meeting is quite small.
The intuition is that the pairwise meeting is mostly determined by the small
coin, which is the more commonly used and held coin. Therefore, a different
m2 will only affect a very small fraction of matched pairs. Third, when the
silver content of the small coin m1 is greater, people will hold less small coin,
and more large coins. In circulation, small coin is also used less and large
coin used more. Finally, note that when either m1 or m2 is reduced, the
total stock of jewelry will become lower. This is because a smaller m1 or
m2 means money being more divisible, and the set of denomination becomes
more efficient in payments during pairwise meeting. Therefore people will
be more willing to hold silver in the form of coins, rather than hoard it as
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Total Stock

Models m1 old m2 new m2 Jewelry

Pre-debasement (m2 = 6) 3.7681 0.0619 − 0.3861

Post-debasement (m2 = 4) 3.0952 0 0.2618 0.3858

Post-debasement (m2 = 3) 2.7547 0 0.4631 0.3856

Table 3: Steady states before and after debasing the large coins.

jewelry.
Next we look at a Proposition-1(iv) steady state following debasement.

Historically, medieval debasements involved both the small denomination
coins and the large denomination coins, as is documented in [16]. Unlike
large denomination coins, small denomination coins are commonly held and
frequently circulated and, therefore, its debasement may lead to different
consequences that the debasement of the large coins. So we analyze these
two kinds of debasement separately.

Debase the large denomination coins We consider two cases: (a) the large
coin is debased from containing 6 units of silver to 4 units and (b) the large
coin is debased from 6 to 3. Here and below, we refer to the debased new
coin and the undebased old coin as “new coin” and “old coin” respectively,
and the small coin (containing 1 unit of silver) as the “small coin.” Table 3
displays the pre-debasement and post-debasement steady states for cases (a)
and (b), respectively.

In both cases, Gresham’s law holds; that is, the new coin replaces the old
coin as the large denomination coin. So the post-debasement steady state
is reduced to a steady state with only two denomination—the small coin
and the new coin and, therefore, the different degrees of debasement matters
only to the extent as different denomination structures as is discussed in
Table 2. For this reason, we report only the Total Stock columns. For other
characteristics of the post-debasement steady state, one can refer to the two
denomination steady state in Table 2.

Debase the small denomination coins For simplicity, we assume the econ-
omy is in a one-denomination environment prior the debasement, where the
only denomination is small coin with silver content m1 = 3. The debasement
reduces its silver content to m1 = 2. The resulting steady states are showed
in Table 4.
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Here Gresham’s law does not hold; that is, the old coins are not driven
out by the new coins. There are a few reasons behind this difference between
debasing the small coin and debasing the large coin. First, the old coin and
new coin are more of a supplement relation than of a substitute relation, even
though the new coins replaces the old coins as the major denomination. More
specifically, the presence of new coins facilitates the circulation of old coins
because there is more combination of coin transfers can come out of them.
As a result, coins in general become more useful as medium of exchange and,
hence, people tend to hold more silver in the form of coins instead of jewelry.
The increase in the number of trading pairs also suggests that more trading
options are available with these two types of coins.

Second, the old coins are not too large compared with the new coins, and
thus are still useful in transactions. Third, it is easy for holders of old coins
to switch to holding new coins, since they can simply do so during a pairwise
meeting when they meet a seller with some new coins, and receive new coins
as changes. They do not need to turn to the mints for such portfolio changes.
Finally, the old and new coins are valued distinctively different in pairwise
transaction.

5.3 The dynamic process following debasement

As already noted, we let the pre-debasement economy be in the above-
computed Proposition-1(ii) steady state and the dynamic process following
debasement is a Proposition-2(i) equilibrium whose initial distribution is im-
plied by the Proposition-1(ii) steady-state distribution. We cannot prove
that there is a Proposition-2(i) equilibrium that converges toward the above-
computed Proposition-2(ii) steady state. Nonetheless, we design our algo-
rithm by assuming that the computed Proposition-2(i) equilibrium does con-
verge to the Proposition-2(ii) steady state. In our algorithm, we approximate
the convergence by assuming that it occurs after T periods, where T is large
enough. In computation, we find that T = 100 is good enough for approxi-
mation; details about the algorithm are in the appendix.

Debase the large denomination coins We consider the same two cases in
the above steady-state comparison. For case (a) (the large coin is debased
from 6 to 4), Figures 1 and 3 shows the total stock of each coin and jewelry
and the minting volume in the dynamic process following the debasement.
There are three interesting observations from those figures.

First, the number of new coins increases while the number of old coins

15



Figure 1: Response of aggregate portfolio following a debasement. Basic
model.

decreases and the new coins not only take over the silver from the old coins,
it also absorbs some of the silver stock from the small coins and the jewelry.
That is because this new lighter coin increase the divisibility of money, induce
more people to hold it.

Second, while eventually all the old coins are entirely driven out by the
new coins (as discussed in the steady-state comparison), the old coins do
not disappear right away after the debasement, neither is their presence in
pairwise trading. Moreover, Figure 2 shows that the old coins continue to
serve as a medium of exchange, alongside in pairwise transactions for some
time.

Third, the total minting volumes more than doubled after the debase-
ment. A further break down of the total minting volume suggests that the
surge is mainly attributed to the coinage of the new coin. As is showed
in steady states comparison, the lighter large coin is more attractive to the
heavier large coin, since the former provides more divisibility. So once the
debasement occurs, not only those who would have minted the old coin are
now minting the new coin, but also some of those who would not have minted
the old coin, since they found the new lighter large coin is more worthwhile

16



Figure 2: Number of coins circulating in pairwise trading after the debase-
ment.

Figure 3: Minting Volume of Silver after debasement.

holding than the small coin or jewelry.
For case (b) (the large coin is debased from 6 to 3), the results are dis-

played in the following figure 4 and 5. All the results are qualitatively the
same with the previous scenario, but quantitatively more significant. No-
tably, the ensuing total minting volume increases much more dramatically,
by more than 450%. This is because now the new coin, weighted 3 unit of
silver, provides more divisibility compared with the 4 unit new coin in pre-
vious scenario, and is more appealing so that more people would rush to the
mint when it is available at the mints.

Debase the small denomination coins As in the above steady-state com-
passion, there is only one small denomination prior the debasement and the

17



Figure 4: Stocks of different coins and jewelry after debasing the large coin
from 6 unit to 3 unit.

Figure 5: Minting Volume of Silver after debasing the large coin from 6 unit
to 3 unit..
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coin is debased from 3 to 2.9 Figure 6 shows the dynamics after the debase-
ment. After the debasements, the old coin circulation first take a dip and
then rise. At first, the emergence of the new coins makes people with both
coins unwilling to use old coins to pay for goods, since the new lighter coins
are more efficient. However, as the new coins gradually become popular, peo-
ple tend to use the old coins more often because they can expect sellers to
give back new coins as changes. The minting volume increases by more than
650% after the debasement. Since the small coins are the major denomina-
tion used in transactions, debasement of small denomination coins increases
the divisibility of money more significantly than the debasement of the large
denomination coins, and therefore the minting volume surge generated is also
more significant.

6 The concluding remarks

Commodity money occupies the most part of monetary history in civil so-
cieties. Compared to fiat money, commodity money is primitive in that its
service as money seems much constrained by its physical properties such as
scarcity, portability, divisibility, and recognizability. While it is folk wisdom
that these properties matter, not much has been explored probably because
it is not easy to place them in models many economists are used to. In other
words, it may be the primitiveness of commodity money that constitutes a
test to modern monetary economics.

Building on an off-shelf matching model, we offer a theory of coinage that
appeals to portability and divisibility and show its usefulness to understand
medieval debasements. (Our theory and modelling approach can accommo-
date scarcity and recognizability.) In the present model there is one sort of
monetary metal but it leaves a room for another sort of metal. Two sorts
of metal permit one to study issues related to bimetallism. For example,
why did both Western and China choose bimetallism for centuries? Why did
bimetallism in Western suddenly collapse in 1873?

9The absence of large denomination here will not affect our qualitative results, be-
cause such debasements only involve denominations smaller or equal to the original small
denomination. We raise the small coin’s silver content mainly to ease computations.
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Figure 6: Transitional dynamics after the small coin is debased from con-
taining 3 units of silver to 2.
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Appendix

A. Proofs of Propositions 1 and 2

Here we give the proof of Proposition 1; the proof of Propositions 2 is the
essentially the same.

Let W be the unique positive solution for z to the equation z = 0.5u(z)+
βz + υ(B). Let W be the set of concave and nondecreasing functions from
Y×X to [0,W ]. Let Π and Θ both be the set of measures on Y×X whose
means are M .

For part (i), let Ω=
∏∞

t=0[Wt × Θt × Πt+1], where Wt × Θt × Πt+1 =
W × Θ × Π, all t. Let the mapping z = {zw

t ,zθ
t ,zπ

t+1}∞t=0 : Ω → Ω
be defined as follows. Fix ω = {wt, θt, πt+1}∞t=0 ∈ Ω and fix t ≥ 0. Let
ht(y, x) be defined by (7) and let ∆1[y, x, ht] and ∆2[yb, xb, ys, xs, wt+1] be
the same as in the main text. Let zw

t (ω)(y, x) = g(y, x, ht). Let zθ
t (ω) be

the set of measures defined by the right side of (8) for each σ ∈ ∆1[y, x, ht].
Let zπ

t+1(ψ) be the set of measures defined by the right side of (9) for each
δ ∈ ∆2[yb, xb, ys, xs, wt+1]. Let Ω be equipped with the product topology so
that it is compact. It is standard to show that (zw

t ,zθ
t ,zπ

t+1) is upper hemi
continuous, compact valued, and convex valued for each t. It follows that z
is upper hemi continuous, compact valued, and convex valued, and, hence,
that z has a fixed point. This fixed point is an equilibrium.

To show that this equilibrium is a monetary equilibrium, suppose by con-
tradiction the opposite. Without loss of generality, suppose that some agent
holds silver wealth B at date 0 and all his wealth is in jewelery. Consider
two options of this agent: minting one unit coin 1 for certain and no minting
any coin at all. For the first option, his expected payoff is bounded below by

υ(B −m1)− (φ1 + γ1}+ 0.5
B −M
B

u[
β

1− β
(υ(B)− υ(B −m1))]

+ 0.5
β

1− β
υ(B −m1) + 0.5

β

1− β
υ(B).

For the second option, his expected payoff is υ(B) + β
1−βυ(B). But then (11)

implies the first option has a higher payoff, a contradiction. This proves part
(i).

For part (ii), the proof is similar to but simpler than the proof for part
(i). It is simpler because the mapping corresponding to z is defined on on
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the finite-dimensional space W ×Θ×Π instead of Ω. This mapping has a
fixed point (w, θ, π) and the fixed point is a steady state.

B. Numerical algorithms

B1. Computing steady states of the basic model

To begin with, vectorize the K + 1-state space into a one-dimensional state,
and define the value vectors {w, g} and distribution vectors {θ, π} accord-
ingly. Denote the total possible number of states as S.

1. Begin with an initial guess {w0, h0, θ0, π0}, where π0 and θ0 are consis-
tent with the total silver stock M .

2. Given end-of-stage-1 value hi and beginning-of-stage-1 distribution πi

from i-th iteration, solve the linear programming problem (2), and
use the solution to update beginning-of-stage-1 value wi+1 and end-of-
stage-1 distribution θi+1 .

3. With wi+1 and θi+1, solve the pairwise bargaining problem as described
in (3).10 Record the terms of trade of each relevant pairs, and update
hi+1 and πi+1 accordingly.

4. Repeat step 2-3 until the convergence criterion is satisfied: ‖wi+1 − wi‖ <
10−6, ‖hi+1 − hi‖ < 10−6 and ‖θi+1 − θi‖ < 10−8, ‖πi+1 − πi‖ < 10−8.

B2. Computing steady states of the post-debasement model

The post-debasement model is similar to the basic model, except that now
we have one additional restriction in the lottery game against mint. That is,
y′o ≤ yo, so the newly updated distribution θi+1 will always have less y0 with
each iteration. Therefore, using the algorithm described in ?? may miss the
real steady state distribution. We can fix the problem by modifying step 2
as follow:

• Given end-of-stage-1 value hi and beginning-of-stage-1 distribution πi

from i-th iteration, solve the linear programming problem (2), and use

10Note that although there are total S2 possible pairs of buyer and seller, there is no
need to compute that many pairs since many of the pairs have zero probability or involve
a buyer with no coins.
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the solution to update beginning-of-stage-1 value wi+1 and get a new
θ̃. Then update θi+1 = δ · θ̃ + (1− δ) · θi, where δ ∈ (0, 1).11

The rest of the procedure are same as A1.

B3. Computing transition paths following debasements

The computation for the transition path is essentially about iterations on the
series of Ψ ≡ {wt, ht, θt, πt+1}Tt=1, where T is the number of periods it takes
for the economy to reach a new steady state. Before computing the transi-
tion paths, we first need to compute the post-debasement steady state using
algorithm described in A2. Denote this steady state as {wT , hT , θT , πT+1}.
We also have to translate the distribution from the pre-debasement steady
state, into the beginning distribution in the debasement environment, denote
the beginning distribution as π1.

1. Take an initial guess Ψ0 ≡
{
w0
t , h

0
t , θ

0
t , π

0
t+1

}T
t=1

, with w0
T = wT .

2. Start from the last period T . Given wT and θiT , solve the pairwise
bargaining problem as described in (3), and get hiT . Record the im-
plied Markov transition matrix as Λi

T . Use hiT and πiT , solve the linear
programming problem of minting, and get wiT−1 accordingly. Record
the implied Markov transition matrix as Υi

T . Then use wiT−1 and θiT−1,
repeat the previous procedure for problems in period T − 1. Finally,
we will have a new series {wit, hit}

T
t=1. And then use {Λi

t,Υ
i
t}
T
t=1 and π1

and generate a new series of distributions
{
πi+1
t , θi+1

t

}T
t=1

.

3. Now use
{
πi+1
t , θi+1

t

}T
t=1

and wT , repeat Step 2 and get
{
πi+2
t , θi+2

t

}T
t=1

.

4. Repeat 2-3 until the convergence criterion is met: maxt
(∥∥πi+1

t − πit
∥∥) <

10−8 , maxt
(∥∥θi+1

t − θit
∥∥) < 10−8, maxt

(∥∥wi+1
t − wit

∥∥) < 10−6, and
maxt

(∥∥hi+1
t − hit

∥∥) < 10−6.

C. Robustness checks

In this appendix, we show how variations in different parameters will affect
the steady state of the model.

11In particular, we find δ = 0.3 works fine.
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