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Abstract

This paper utilizes the Bayesian persuasion approach developed in Kamenica and Gentzkow

[10] to examine the optimal information disclosure in a two-player contest. One contestant’s

valuation is commonly known and the other’s is his private information. The contest designer

can pre-commit to a signal to influence the uninformed contestant’s belief about the informed

contestant. We show that, when the state is binary, it is without loss of generality to focus on

the no disclosure and full disclosure, which is commonly assumed in this literature. However,

when the state goes beyond binary, such a restriction may be of loss of generality. We propose a

simple method to compute the optimal signal, which yields explicit solutions in some situations.
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1 Introduction

Contests are widely adopted to model R&D, rent seeking, political campaign, patent races, science

competitions, job promotions and lobbying. It is now well documented in the literature that

contestants often have private information about their own abilities, valuations, competence, etc.1

In real life contests, the organizer is able to influence contestants’ beliefs about each other by

information disclosure. For example, in the U.S. lobbies, the government can decide the level

of transparency, which requires the lobbying groups to provide information about their business.

Such transparency requirement could potentially leak information about their private interests. In

job promotions, companies can decide whether to announce the list of candidates and furthermore

whether to reveal workers’ past experience. Such information conveys signals correlated to workers’

private information, and could lead to updates in beliefs once disclosed. In research tournaments,

research proposals serve as good signals of firms’ research abilities. How to reveal such information

back to the firms can influence the competition. In the U.S. political campaigning, candidates are

demanded by the Federal Election Campaign Act to reveal the sources of campaign contributions

and campaign expenditure, which conveys information about the depth of financial support of a

candidate.

In this paper, we will illustrate how information disclosure could be designed optimally. Early

works on this issue usually assume zero or one choice by comparing no and full disclosure.2 With

no disclosure, beliefs remain the prior; and with full disclosure, contestants’ exact types become

common knowledge before contests take place. However, in reality, something in between could

often arise. It is quite a debate whether restricting to the no and full disclosure is with loss of

generality or not. However, due to lack of proper technical tools, it is quite difficult to go beyond

the zero or one choice. Fortunately, the recent developed Bayesian persuasion approach, pioneered

by Kamenica and Gentzkow [10], provides us with the possibility to tackle such a question. As

to be shown, one general message from the paper is that restricting to the no and full disclosure

is indeed with loss of generality, which suggests the need for a more general treatment along this

literature.

In our model, there are two contestants: contestant A with commonly known valuation and

contestant B with privately known valuation. The contest designer and contestant A share the

same prior about contestant B’s valuation. The most important assumption is that the contest

designer can pre-commit to a signal before the contest takes place. Since the signal is correlated

to contestant B’s private valuation, contestant A will update his belief about contestant B after

observes a signal realization. Finally, contestant A and B engage in the contest by simultaneously

1See Zhang and Wang [17], Moldovanue and Sela [14], Fey [3], Hurely and Shogren [8].
2Some literatures will be discussed later.



choosing effort levels in the competition . The contest designer aims to maximize the total effort

from the two contestants by choosing the signal.

We show that when contestant B’s valuation follows a binary distribution, it is without of

generality to focus on no and full disclosure, and one of them is optimal among all feasible disclosure

policies. The necessary and sufficient condition for each of them to be optimal is provided. This

condition does not depend on the prior distribution of contestant B’s valuation. However, when

contestant B’s valuation takes more than (including) three different values, we illustrate that the

simple zero or one choice fails in maximizing the contest designer’s objective in general. The novelty

of the paper is to show that it is without loss of generality to focus on posterior beliefs on the edge

of the simplex. The edge of the simplex has the same properties as the binary case, which is

fully solved in our model. Such observation enables us to propose a simple method to compute the

optimal signal. This method allows us to explicit characterize the optimal signal in some situations.

First, we show that when contestant A is strong enough, full disclosure is optimal. Second, when

contestant A is a bit weaker, pooling the highest two valuations together and fully separates the

others is optimal.

How to reveal information to influence the outcome of a game has been extensively studied in

the literature.3 Kamenica and Gentzkow [10] are the first to investigate how to disclose information

through Bayesian persuasion. In their paper, there are a single sender and a single receiver. At the

beginning, there is a state of nature unknown to everyone. Sender pre-commits to an informative

signal about the state of the world. After the Receiver observes a signal realization and updates

his belief about the state of nature, he takes an action. What make the information disclosure a

Bayesian persuasion is the assumption that the Sender cannot distort or conceal information once

the signal is realized. This key assumption is quite likely to hold in contests and makes our paper

a natural application. For instance, in political campaigns and lobbies, governments’ commitment

is legally mandated. Furthermore, contest organizers usually need to hold the same contests over

and over again, and reputation concerns often enforce the organizer to commit.

The novelty of Kamenica and Gentzkow [10] is showing that finding the optimal signal is equiv-

alent to solving the concavification of a value function defined on the set of all posteriors. This

observation is particularly powerful if the state follows a binary distribution since the concavifi-

cation has a graphical representation. However, going beyond binary distribution is usually hard.

Our paper is based on general distribution, and unfortunately, none of their results have direct

implication on our model. In addition, our paper differs from their original paper in two aspects.

First, there are multiple receivers. Second, each receiver knows their own valuations when making

3Information can be revealed through many different ways. For example, in Vincent Crawford and Sobel [1], the
send can disclose information through cheap talk. In Grossman [7] and Milgrom [13], the sender cannot lie about the
truth although he does not need to tell the whole truth. In Kartik [11] and Spence [15], there is a cost of lying.



decisions.

The theory in Kamenica and Gentzkow [10] is then extended in several directions. Kamenica

and Gentzkow [6] allow multiple senders and investigate whether competitions among senders will

lead to more information to be revealed. Yun [16] applies the theory of Bayesian persuasion to

voting games. Her model is more general than Kamenica and Gentzkow [10] in the aspect that it

allows multiple receivers. As shown in Kamenica and Gentzkow [10], allowing multiple receivers will

not result in more complications if the persuasion is public in the sense that the signal realization

is publicly observed. Unfortunately, when persuasion could be private, serious problem arises since

“the key simplifying step in the analysis-reducing the problem of finding an optimal signal to one

of maximizing over distributions of posterior beliefs-does not apply”. The contribution of Yun [16]

is to be the first one to investigate private persuasion, which is restricted to independent private

persuasion, and compares it with public persuasion. To accommodate this complication, the author

focuses on binary state of nature. Our paper is the first paper to apply the Bayesian persuasion

theory in Kamenica and Gentzkow [10] to contest theory, and we deal with general distributions.

The literature on information disclosure in contests motivates our paper. Fu et. al [4], Fu et.

al [5], and Lim and Matros[12] consider how to reveal the information about the entry result when

entries are stochastic. Denter et al. [2] analyze the incentive for a privately informed contestant

to disclose his information to his rival, the incentive for the uninformed contestant to acquire

information, and the incentive for the designer to mandate transparency. All of these papers focus

on comparing the no disclosure and full disclosure. As a result, a natural question is whether

restricting to the zero or one choice is with loss of generality or not. The approach of Bayesian

persuasion covers both no and full disclosure as special cases, and allows much more instruments

for the organizer. Our paper analysis demonstrates that when the state is binary, it is plausible

to restricting to the no and full disclosure since either of them will be optimal among all feasible

disclosure policies. However, when the state takes more than three values, such a simplification

could be with loss of generality.

The rest of the paper is organized as follows. In Section 2, we describe the model. In Section 3,

we characterize the equilibrium in the posterior contest game. In Section 4, we solve the optimal

signal. In Section 5, we conclude. All the technical proofs are relegated to the appendix.

2 The model

Consider the following static contest under one-sided incomplete information. The basic framework

is borrowed from Hurley and Shogren [8, 9] and Denter et al. [2]. There are two risk neutral contes-



tants, A and B, competing with each other for a prize by exerting irreversible efforts simultaneously.

The success function of contestant i ∈ {A,B} under the effort portfolio (xA, xB) is given by

pi(xA, xB) =
xi

xA + xB
(1)

If both exert zero effort, then each wins with half probability. The payoff of a contestant is simply

his valuation of winning multiplied by the winning probability, and minus the cost of effort, which

is assume to be linear.

Contestant A’s valuation of winning is commonly known as vA. Contestant B’s valuation VB

of winning is his private information; the contest designer and contestant A share a common prior

about it. More specifically, VB is a random variable on Ω with N ≥ 2 values, vB1 < · · · < vBN .4

Let ∆N−1 = {µ ∈ RN |µn ≥ 0,
∑N

n=1 µ
n = 1} denote the standard (N − 1)-simpliex in RN , and

int(∆N−1) denote the interior of ∆N−1. Each point µ ∈ ∆N−1 is also identified as a probability

distribution on {vB1, · · · , vBN}. Denote the prior distribution of VB as µ0 = {µ10, · · · , µN0 } and

assume µn0 > 0,∀n.5

The difference between our work and the previous literature is that the contest designer can pre-

commit to a signal before the contest starts in order to maximize her objective, the total expected

effort from the two contestants. A signal π consists of a realization space S with N elements and

a family of likelihood distributions π = {π(·|vBi)}Ni=1 over S.6 Potentially, the instruments for

the contest organizer is quite rich. For example, both no and full disclosure policies are special

cases of the signal. It also includes many policies such as partitions, and no lie about the truth.

As noted in Kamenica and Gentzkow [10], the optimal signal also provides an upper bound when

the contest designer’s commitment power is absent, which means that any information disclosure

through cheap talk, signaling, etc, cannot generate more total effort.

Note that the signal is a conditional distribution on contestant B’s valuation. Thus, when a

signal s ∈ S is realized, contestant A needs to update his belief about contestant B using Bayes’s

rule. Denote the posterior belief as µs ∈ ∆N−1. Although we assume that the prior µ0 belongs to

int(∆N−1), the posterior belief µs could lie on the boundary of ∆N−1.

The timing of the game is as follows.

4When N = 1, there is no private information, and there is no role for information disclosure. Furthermore, all
results hold for continuous distribution with N goes to infinity.

5It is without loss of generality to assume µ0 ∈ int(∆N−1), since we can simply reduces the dimension of N when
some prior probabilities are zeros.

6As shown in Kamenica and Gentzkow [10], it is without loss of generality to assume that the size of the signal is
less than the minimum of the size of action space and the type space. In our model, the action space is continuous
and the type space has N values.



1. The contest organizer chooses and pre-commits to a signal π.

2. Nature moves and draws a valuation for contestant B, say vBn.

3. The contestant organizer carries out his commitment and a signal realization s ∈ S is gener-

ated according to π(s|vBn).

4. The signal realization s is observable by the public and leads to a posterior belief of contestant

B, denoted as µs.

5. The contest takes place and both contestants choose effort levels simultaneously.

Decisions are made only in stage 1 and 5. We call stage 1 the Bayesian persuasion stage and stage

5 the posterior contest game. The posterior game is a one-side incomplete information contest

between two contestants who simultaneous choose their efforts. In the Bayesian persuasion stage,

the contest designer’s problem is to choose the optimal signal π to maximize the total effort. The

equilibrium concept we employ is perfect Bayesian Nash equilibrium. We work from backward and

first examine the posterior contest game, i.e., stage 5.

3 The posterior contest game

In the posterior contest game, contestant A’s valuation is commonly known as vA and contestant

B’s valuation is commonly believed as drawn from the distribution µs. The equilibrium of such a

game is summarized in the following proposition.

Proposition 1 (Equilibrium in one-sided incomplete information contest) In a two-contestant,

A and B, one-sided incomplete information contest, where A’s valuation is commonly known as vA

and B’s valuation is distributed according to µs ∈ ∆N−1 on (vB1, · · · , vBN ), there exists a unique

pure strategy equilibrium in which contestant A chooses effort

x∗A =

(
Eµs [

1√
vB

]

1
vA

+ Eµs [
1
VB

]

)2

,

and contestant B chooses effort according to

x∗B(vBn) =
√
vBn

(
Eµs [

1√
VB

]

1
vA

+ Eµs [
1
VB

]

)
−

(
Eµs [

1√
VB

]

1
vA

+ Eµs [
1
VB

]

)2

, n = 1, 2, · · · , N.



The expected total effort in this equilibrium is

F (µs) =
Eµs [
√
VB]Eµs [

1√
VB

]

1
vA

+ Eµs [
1
VB

]
. (2)

The notation Eµs{·} is the expectation under belief µs.

Note that we assume interior solutions here.7 The formula works for any distribution µs, even

when µs is a continuous probability distribution. Now we can examine the contest organizer’s

optimal signal, i.e., the optimal Bayesian persuasion in stage 1.

4 Bayesian Persuasion

In stage 1, the contest designer chooses the signal π to maximize the total effort in the contest.

Given a signal realization s, it leads to a posterior belief µs and total effort F (µs) defined in equation

(2) in Proposition 1. Due to the complexity in the choice of π, the contest designer’s problem is

not tractable in general.

Denote a distribution of posteriors as τ ∈ ∆(∆N−1). τ is called Bayes-plausible if the ex-

pected posterior probability equals the prior, i.e.,
∑

Supp(τ) µdτ(µ) = µ0. Kamenica and Gentzkow

[10] shows that finding the optimal signal π is equivalent to searching over the Bayes-plausible

distribution of posteriors τ to maximize the expected value of the posterior total effort:

max
{αk,µk}Nk=1

N∑
k=1

αkF (µk) (3)

s.t.
N∑
k=1

αkµk = µ0,

N∑
k=1

αk = 1, αk ≥ 0, and µk ∈ ∆N−1, k = 1, 2, · · · , N.

Please refer to their original paper for details. If we treat µk as a lottery and F (µk) as the value

of the lottery, then we can treat the distribution of posterior beliefs τ as the compound lottery

(µ1, · · · , µN ;α1, · · · , αN ). As a result, the above problem is to maximize the expected value of F

7A sufficient condition to guarantee this is to assume 1/vB1 ≤ 1/vA + 1/vBN . Note that contestant B’s effort
function is increasing in his valuation. Therefore, in the case where some valuations’s optimal efforts hit zero, we can
transform the model by assuming that those valuations are replaced by zero valuation.



among all possible compound lotteries τ whose reduced lottery remains µ0. The above formula is

a bit different from the original one in Kamenica and Gentzkow [10]. In general, the support of τ

should include a continuum of posterior beliefs. However, as shown in their online appendix, it is

without loss of generality to assume that the size of signal as well as the number of posteriors to

be less than the minimum of the size of action space and the type space. In our model, the action

space is continuous and the type space has N values. Thus, we can assume that there are at most

N posterior beliefs in τ .

Mathematically, the indirect value function from the above maximization program (3) is exactly

the value of the concavification of F evaluated at the prior, denote as cavF (µ0). The following

result is established in Kamenica and Gentzkow [10].

Proposition 2 The optimal signal always exists and achieves an expected total effort equal to

cavF (µ0).

As a result, we need to construct the concavification of F on the simplex ∆N−1. In our model,

given any posterior belief, the expected total effort in the contest is F (·) defined in (2).

Let ei ∈ ∆N−1 denote the vector with 1 on the i-th slot, and 0s everywhere else. We also

call ei the vertex of the simplex. Denote the set of the vertexes as Vertex (∆N−1). Let eij =

{tei + (1− t)ej , t ∈ [0, 1]} denote the line segment connecting ei and ej . We also call eij the edge

of the complex connecting the vertexes ei and ej . Denote the set of edges as Edge(∆N−1). Let

eijk = {αei+βej +(1−α−β)ek, α, β ≥ 0 and α+β ≤ 1} denote the plane connecting the vertexes

ei, ej and ek. We also call eijk the face of the complex connecting the vertexes ei, ej and ek.

Denote the set of faces as Face(∆N−1). Note that eii and eiii degenerates to the vertex ei. These

terminologies will be very convenient later on.

Under no disclosure, the expected total effort is F (µ0), and under full disclosure, the expected

total effort is

ζ(µ0) :=
N∑
n=1

µn0F (en) =
N∑
n=1

µn0
1

1
vA

+ 1
vBn

. (4)

Finding the concavification is relatively straightforward if the valuation space is binary since

the posterior belief can be represented by a single variable and the concavification has a graphical

representation.8 In the following, we will first examine the binary case, and then the general case.

The binary case is an important building block for solving the general case.

8If the objective function only depends on a single measure of the posterior belief such as the mean, it also
simplifies the problem. Unfortunately, this is not the case in our model.



4.1 Binary case: N=2

When contestant B’s valuation follows a binary distribution, let vB1 = vL and vB2 = vH . In

the posterior contest game, let µs = (q, 1 − q). In this case, the posterior belief is characterized

by a single variable q, the probability of low valuation. Note that, although the prior belongs

to int(∆N−1), the posterior belief could lie on the boundary, i.e., q ∈ [0, 1]. We can rewrite the

expected total effort in the posterior contest game in (2) as:

φ(q) := F (q, 1− q) =
( q√

vL
+ 1−q√

vH
)(q
√
vL + (1− q)√vH)

1
vA

+ q
vL

+ 1−q
vH

, q ∈ [0, 1]. (5)

Direct calculation shows that

φ′′(q) =
2vAvHvL(

√
vH −

√
vL)2(vA(vH +

√
vHvL + vL) + vHvL)

(vHvL + vA(qvH + (1− q)vL))3
× (vA −

√
vLvH) (6)

The first term is positive for any q ∈ [0, 1], hence sign{φ′′(q)} = sign{vA −
√
vLvH}. Therefore

φ(q) is

convex, if vA ≥
√
vHvL;

concave, if vA ≤
√
vHvL.

(7)

When φ is concave, the concavification of φ is, by definition, just φ itself. When φ is convex,

by Jensen’s inequality, the concavification of φ is ζ defined in (4). In summary

cavφ =

ζ if vA ≥
√
vHvL;

φ if vA ≤
√
vHvL.

(8)

Note that when vA =
√
vHvL, φ(q) is actually linear, and ζ coincides with φ. Hence, we have the

following characterization for the binary case.

Proposition 3 (Optimal Disclosure Policy: binary case) When N = 2, either full disclo-

sure or no disclosure is optimal. More specifically, full disclosure is optimal if vA ≥
√
vHvL , and

no disclosure is optimal if vA ≤
√
vHvL.

Note that when vA =
√
vHvL, all signals yield the same expected total effort. The theorem shows

that the full (no) disclosure is optimal if contestant A is strong (weak). Here is the intuition. Note

that a more balance contest will induce more total effort as it can induce more competition. Let’s

first consider the case vA < vL. The other cases are similar. When contestant B is of low valuation,



it is better to reveal this information as vL is the closest valuation to that of contestant A. When

contestant B is of high valuation, it is better to conceal this information since in this case contestant

A will think contestant B of average valuation and the contest will be more balanced. As a result,

there is a tradeoff between high and low valuations if more information is reveals. When contestant

is very the benefit from concealing the high valuation dominates the cost from separating the low

valuation.

In the binary case, the above proposition fully characterizes the optimal signal. Denter et al. [2]

yields the same result when restricting to the no and full disclosure. Our analysis demonstrates that

their result is robust if more sophisticated disclosure policies are allowed in the contest designer’s

choice. However, when we go beyond the binary case, this message could fail in general.

4.2 More than two states: N ≥ 3

From now on, we assume that there are more than two states, i.e., N ≥ 3. It can be shown that

in this case the expected total effort in the posterior contest F (µs) is neither concave nor convex.9

Furthermore, since F (µs) cannot be characterized by a single variable, the concavification cannot

be solved by examining the graph. As a result, it becomes much more complicated than the binary

case, and we need to find the concavification of F directly. The following two lemmas are important

for our main results.

Lemma 1 ∀µ /∈ Face(∆N−1), there exists weights λk and vector µk ∈ Face{∆N−1}, k = 1, · · · ,K,

such that:

F (µ) <
K∑
k=1

λkF (µk), (9)

with
K∑
k=1

λk = 1, λk > 0, k = 1, · · · ,m;

K∑
k=1

λkµk = µ,

Lemma 2 ∀µ /∈ Edge(∆N−1), there exists weights λk and vector µk ∈ Edge{∆N−1}, k = 1, · · · ,K,

9See the appendix for the proof.



such that:

F (µ) ≤
K∑
k=1

λkF (µk), (10)

with

K∑
k=1

λk = 1, λk > 0, k = 1, · · · ,m;

K∑
k=1

λkµk = µ,

Lemma 1 shows that for any lottery µ not in the face of the complex, we can find a compound

lottery (µ1, · · · , µK ;λ1, · · · , λK), whose elements are lotteries on the face and whose reduced lot-

tery remains µ, such that it yields strictly higher expected value than the lottery µ. Lemma 2

shows that for any lottery µ not on the edge of the complex, we can find a compound lottery

(µ1, · · · , µK ;λ1, · · · , λK), whose elements are lotteries on the edge and whose reduced lottery re-

mains µ, such that it yields weakly higher expected value than the lottery µ. The equality in

Lemma 2 holds only when vA is equal to some very specific values, which are solely determined by

the parameters vB1, · · · , vBn10. For example, if vA =
√
vBivBj , then any probability mixture over

vBi and vBj will yield the same expected value, similar to the binary case. Mathematically, we

can show that the strict relationship in Lemma 2 arises generically. The above lemmas yield the

following proposition.

Proposition 4 In the posterior distribution induced by an optimal signal, all the posteriors must

lie on the face of the simplex; furthermore, generically, all the posteriors must lie on the edge of

the simplex.

The above proposition demonstrates that it is never optimal to pool more than four (including

four) valuations together. Furthermore, it is never optimal to pool more than three (including

three) valuations together unless vA is equal to some specific values, which are solely determined

by the parameters vB1, · · · , vBn.

Although Proposition 4 characterizes some necessary properties of the optimal signal, the so-

lution remain unknown. The maximization problem in (3) provides a general way to compute the

optimal signal, but the programming could be too complicated to solve. In the follows, we will pro-

pose a simplified method for computing an optimal signal11. The second part of Lemma 2 implies

10See the proofs of these two lemmas for more details.
11The optimal signal may not be unique as we have observed in binary case in section 2.



the following result.

Lemma 3 An optimal signal can be achieved by using posteriors on the edge.

Lemma 3 on its own does not simplify the whole problem too much. Although we can restrict

to posteriors on the edges, their exact locations are unknown and one edge could have more than

one posteriors. However, restricting on a edge of the complex, the maximization program is simply

equivalent to our fully solved binary case , and we can utilize our results in the previous section 2.

We know the posterior total effort function F (·), restricted on an edge of the simplex, is either

concave or convex . If an edge is concave, we can use at most one point on this edge; if an edge

is convex, we can use at most two points on this edge and the points must be the vertexes; if an

edge is linear, we treat it as convex. Those observations together with Lemma 3 greatly simplify

the whole problem. We have the following proposition.

Proposition 5 The following simplified programming can be adopted to solve the optimal signal.

Step 1: Determine the shapes of the edges. The edge eij is convex (strictly concave) if and only

if vA ≥ (<)
√
vBivBj.

Step 2: Fully separate all valuations without any associated strictly concave edge, i.e., valuations

less than v2A/vN .

Step 3: Now the remaining valuations should have at least one associate strictly concave edge.

For convex edges, it has no weight and no parameter is needed; for strictly concave edges, assign

one parameter for the weight of the edge and one parameter to identify the position of the point.

This proposition simplifies the computation of the optimal signal to a much easier problem. The

number of edges could be potentially very small by excluding convex edges; each edge of the simplex

can have at most one posterior; each posterior is identified by a single parameter. In some cases,

Proposition 5 actually pins down the optimal signal.

Corollary 1 Suppose N ≥ 3. If vA ≥ √vB(N−1)vBN , full disclosure is optimal.

The intuition can be drawn from the binary case. When contestant A is very strong, it is never

optimal to pool any two valuations together. This is because the loss from the higher valuation is

less than the gain from the lower valuation. Another fully solvable case is the following.

Corollary 2 Suppose N ≥ 3. If vA ∈ (
√
vB(N−2)vBN ,

√
vB(N−1)vBN ), the following signal is

optimal. Whenever the valuation is less or equal to vB(N−2), reveal it truthfully; when the valuation

is either vB(N−1) or vBN , reveal that it lies in the set {vB(N−1), vBN}.



For the case vA <
√
vB(N−2)vBN , a closed form characterization of the optimal signal is usually

not available. However, the following example illustrates the power of Proposition 5.

Example 1 Suppose vA = 5/2, vB1 = 1, vB2 = 4, vB3 = 9, and π = (π1, π2, π3). Note that the edge

e12 is convex and the edges e13 and e23 are strictly concave. According to Proposition 5, we can

restrict attention to the following posteriors: (s, 0, 1− s), s ∈ [0, 1] or (0, µ, 1− µ), µ ∈ [0, 1]. Let λ

and 1− λ be the weights. Then the program reduces to

max λ ∗ F (s, 0, 1− s) + (1− λ) ∗ F (0, µ, 1− µ)

st. λ ∗ (s, 0, 1− s) + (1− λ) ∗ (0, µ, 1− µ) = (π1, π2, π3)

0 ≤ s, µ, λ ≤ 1

One can solve s, µ in terms of λ: s = π1
λ , µ = π2

1−λ . Plugging these conditions into the objective

function yields

maxλ ∗ F (
π1
λ
, 0, 1− π1

λ
) + (1− λ) ∗ F (0,

π2
1− λ

, 1− π2
1− λ

), s.t. λ ∈ [π1, 1− π2], (11)

which is a single-variable maximization problem, hence easy to solve.

For example, when π = (1/3, 1/3, 1/3) , the optimal

λ∗ =
2(223244− 461

√
97027)

285867
≈ 0.557227.

The maximal value is about 1.44705, which can be implemented by the following likelihood matrix:

L =

 1 0

0 1

0.671681 0.328319


where the row corresponds to states, and the column corresponds to signals. Only two signals {s1,s2}
are used in the optimal disclosure rule: when the state is the lowest one,i.e., vB1,send the signal

s1; when the state is the medium one,i.e., vB2, send the signal s2; when the state is the highest,

i.e., vB3, send signal either s1 or s2 with probabilities 0.671681 and 0.328319 respectively. The

posterior belief after observing s1 is ( 1
3λ∗ , 0, 1 −

1
3λ∗ ) ≈ (0.5982, 0, 0.4018), and the posterior belief

after observing s2 is (0, 1
3(1−λ∗) , 1−

1
3(1−λ∗)) ≈ (0, 0.752831, 0.247169).

Note that the example also applies when the state takes more than three values with all other

valuations less than 1. This is because any such valuations should be fully separated according to



Proposition 5. Also note that if we want to solve this example by using the original program (3)

directly, it will involve in much more computations.

5 Conclusion and discussion

In this paper, we investigate how information disclosure through Bayesian persuasion can be utilized

to enhance the total effort in contests. In our model, one contestant’s valuation is commonly known

and the other has private valuation. We show that in the binary case, it is without loss of generality

to focus on no and full disclosure as either will be optimal even if more sophisticated disclosure

policies can be adopted. However, going beyond the binary case not only brings up technical

challenges, but also could fail this message. In any optimal signal, the induced posteriors cannot

pool more than three (including) three valuations together. We show that if the commonly known

contestant is strong enough, the full disclosure is optimal; if he is a bit weaker, pooling the highest

two valuations together and fully separating the others is optimal. We also illustrate an efficient

method to compute the optimal signal in the general case.

In Kamenica and Gentzkow[10], their first question is when the sender could benefit from

persuasion. The same question can be asked in our framework as well. Proposition 4 actually

implies that with N ≥ 4, the contest designer always benefit from persuasion, and with N = 3, the

contest designer always benefit from persuasion generically. Denter et al. [2] compare full disclosure

and on disclosure with binary distributions. In our framework with more than two valuations, it

can be shown that the full disclosure dominates the no disclosure if and only if the commonly

known contestant’s valuation is below a cutoff.12

A Proofs

Proof of Proposition 1:

Fixing xA, x∗B(vBn) solves

max
xB≥0

xB
xB + xA

vBn − xB.

Assuming interior solutions, we get x∗Bn =
√
vBn
√
xA − xA. Player A choose x∗A to maximize

max
xA≥0

Eµs

[
xA

xVB + xA
vA − xA

]
.

12Proofs are available in the online appendix.



The FOC is

Eµs

[
xBi

(xBi + x∗A)2
vA

]
= 1.

Plugging in xBi =
√
vBi
√
x∗A − x∗A and solving for x∗A yields:

x∗A =

(
Eµs [

1√
vBi

]

1
vA

+ Eµs [
1
vBi

]

)2

,

Therefore,

x∗Bi =
√
vBi
√
x∗A − x

∗
A =
√
vBi

(
Eµs [

1√
vBi

]

1
vA

+ Eµs [
1
vBi

]

)
−

(
Eµs [

1√
vBi

]

1
vA

+ Eµs [
1
vBi

]

)2

.

While the expected total effort is

F (µs) = Eµs [x
∗
Bi] + x∗A = Eµs [

√
vBi
√
x∗A − x

∗
A] + x∗A = Eµs [

√
vBi]

√
x∗A =

Eµs [
√
vBi]Eµs [

1√
vBi

]

1
vA

+ Eµs [
1
vBi

]
.

2

Proof of Lemma 1 and Lemma 2:

Take a fixed prior µ ∈ int(∆N−1), and a fixed vector u with
∑n

i=1 ui = 0, defined the following

function

ηu(ε) := F (µ+ εu) (12)

Clearly ηu is well defined on the interval [δu1 , δ
u
2 ] where

δu1 = min(ε|µs + εu ∈ ∆N−1)

and

δu2 = max(ε|µs + εu ∈ ∆N−1).

Since µs is interior, δu1 < 0 < δu2 . We need the following key Lemma 4 to proceed.

The following lemma summaries the properties of the function η.

Lemma 4 Fix N ≥ 3 and {vBi, i = 1, · · · , n}

(1) for any u with
∑
ui = 0 and any positive vA, η′′ doesn’t change sign on the interval [δu1 , δ

u
2 ].

(2) for any positive vA, there exists a vector u with
∑
ui = 0 such that η′′u = 0 on the interval

[δu1 , δ
u
2 ].



(3) for any positive vA(with exception at at most one point when N = 3), there exists a vector u′

with
∑
u′i = 0 such that η′′u′ > 0 on the interval [δu

′
1 , δ

u′
2 ].

Proof of Lemma 4:

Part (1):

Define w1 = (1, 1, · · · , 1), w2 = (
√
vB1,
√
vB2 · · · ,

√
vBi), w3 = ( 1√

vB1
, 1√

vB2
· · · , 1√

vBn
), w4 =

( 1
vB1

, 1
vB2
· · · , 1

vBn
), then we have

ηu(ε) = F (µ+ εu) =
Eµ+εu[

√
vBi]E

µ+εu[ 1√
vBi

]

1
vA

+ Eµ+εu[ 1
vBi

]
=
〈µ+ εu,w2〉 × 〈µ+ εu,w3〉

1
vA

+ 〈µ+ εu,w4〉

Define f(ε) := 〈µ+ εu,w2〉, g(ε) = 〈µ+ εu,w3〉, and h(ε) := 1
vA

+ 〈µ+ εu,w4〉. Clearly f, g, h

are linear in ε, therefore, g′′ = f ′′ = h′′ = 0. Moreover,

ηu =
fg

h
, with f > 0, g > 0, h > 0.

Using product rule, we have

η′u = (
fg

h
)′ =

(f ′g + fh′)h− fgh′

h2

η′′u = (
fg

h
)′′ = (

(f ′g + fh′)h− fgh′

h2
)′ =

2f ′g′h2 − 2hh′(f ′g + fh′) + 2fg(h′)2

h3
(13)

Here we have used the fact that f ′′ = h′′ = g′′ = 0. Note that the denominator h3 is positive,while

the numerator is actually a constant,independent of ε as

(
2f ′g′h2 − 2hh′(f ′g + fh′) + 2fg(h′)2

)′
= 2f ′g′2hh′−2h′h′(f ′g+fg′)−2hh′2f ′g′+2(f ′g+fg′)(h′)2 = 0

again the linearity of f, g, h is used. Therefore η′′ doesn’t change sign on the interval [δu1 , δ
u
2 ], so

part (1) is proved.

Part (2):



Pick u such that

〈u,w1〉 = 0,

〈u,w2〉 = 〈µ,w2〉,

〈u,w4〉 =
1

vA
+ 〈µ,w4〉.

This is possible as the vectors w1, w2 and w4 are linearly independent as N ≥ 3 and vBi are

pairwise different. Then f(ε) = (1 + ε)〈µ,w2〉 and h(ε) = (1 + ε)
(

1
vA

+ 〈µ,w4〉
)

,therefore,

ηu(ε) =
f(ε)g(ε)

h(ε)
=

〈µ,w2〉(
1
vA

+ 〈µ,w4〉
)g(ε).

is linear in ε, therefore η′′u = 0 on the interval [δu1 , δ
u
2 ].

Part (3)

When N ≥ 4, the vectors w1, w2, w3 and w4 are linearly independent, therefore we can pick

u′ such that

〈u′,w1〉 = 0,

〈u′,w2〉 = 1,

〈u′,w3〉 = 1,

〈u′,w4〉 = 0.

In this case h is a constant function, or h′ = 0, so by Equation 13,

sign(η′′u′) = sign(f ′g′) = sign(〈u′,w2〉〈u′,w3〉) = sign(1)

Therefore η′′u′ > 0.

When N = 3, we need another construction of u′. Pick u′ such that

〈u′,w1〉 = 0,

〈u′,w2〉 = 〈µ,w2〉,

〈u′,w3〉 = 〈µ,w3〉,



again such u′ exists by the independence of w1, w2 and w3. In this case f(ε) = (1 + ε)〈µ,w2〉,
g(ε) = (1 + ε)〈µ,w3〉, by Equation 13,

η′′u′ = 〈µ,w2〉〈µ,w3〉2 (h(ε)− (1 + ε)h′(ε))2

h3
= 〈µ,w2〉〈µ,w3〉

2
(

1
vA

+ 〈µ,w4〉 − 〈u,w4〉
)2

h3
(14)

Therefore we have η′′u′ > 0 as long as 1
vA

+ 〈µs,w4〉 − 〈u,w4〉 6= 0, which rules at most one vA.

Direct calculations show that the critical vA satisfies the following condition

1

vA
= (

1
√
vB1vB2

+
1

√
vB1vB3

+
1

√
vB2vB3

), (15)

If N = 3, vB1 < vB2 < vB3. Note that this critical vA actually depends only on the values of player

B, but not on the belief µ. Therefore Lemma 4 is proved. 2

Now we start to prove Lemma 1 and Lemma 2.

Prove of Lemma 1: For N ≥ 4, first let us assume that µ have full support. According to part

(3) of Lemma 4, for any positive vA there exists a vector u′ with
∑
u′i = 0 such that η′′u′ > 0 on the

interval [δu
′

1 , δ
u′
2 ]. Let λ =

δu2
δu2−δu1

∈ [0, 1], then 0 = λδu1 +(1−λ)δu2 , therefore, by Jensen’s inequality

ηu(0) = ηu(λδu1 + (1− λ)δu2 ) < ληu(δu1 ) + (1− λ)ηu(δu2 )

or equivalently

F (µ) < λF (q′) + (1− λ)F (q′′) (16)

with q′ = µs+δu1 u and q′′ = µs+δu2 u. Clearly q′ 6= q′′ moreover µ = λq′+(1−λ)q′′. By definition

of δu1 and δu2 , vector q′ and q′′ are not in the interior of ∆N−1, therefore they lie on the boundary

of ∆N−1. Suppose , for example that q′ doesn’t lie on the face of the simplex, then its supports

contains at least four vBi’s, we can continue this decomposition process and applying the above

construction to q′ Iteratively until the all the posteriors found lie on some face of the simplex.

Prove of Lemma 2: The proof is similar to the proof of Lemma 2. We may part (2) of the Lemma

4 at the exceptional vA if necessary. However, we now only have weak inequality, not strict less

inequality. 2

Proof of proposition 4 : Directly follows from Lemma 1, 2, Equation 3 and Proposition 2. 2

Proof of Lemma 3: Directly follows from Lemma 2, Equation 3 and Proposition 2. 2

Proof of proposition 5 : By Lemma 3, we can restrict attention to posteriors that lie on the



edges. The concavity/convexity of the function F () on each edge eij is analyzed in section 2. The

Proposition just follows. 2

Proof of corollary 1 : Directly follows from proposition 5. 2

Proof of corollary 2 : Directly follows from proposition 5. 2
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