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Model Selection Test

I Economists often have multiple models for one economic
phenomenon.

I Myopic Markov transition model versus lifetime welfare
maximization model for schooling choice. (Cameron and
Heckman, 1998, JPE).

I Rule-bound group utility maximization model versus individual
utility maximization model for voter turnout. (Coate and
Conlin, 2004, AER).

I Belief heterogeneity model versus preference-based models for
explaining Long-Shot Bias in asset pricing. (Gandhi and
Serrano-Padial, 2012).

I Regressor is exogenous or endogenous in a nonparametric IV
model.

I One economic theory may generate multiple empirical models:
I Function form specification and variable selection in

semi/nonparametric models;
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Model Selection Test

I Model selection test is a natural way to statistically compare
the fit of these models.

I With two models,M1 andM2, the null hypothesis of the
model selection test is:

H0 : F (M1, µ) = F (M2, µ)

where F (·, ·) is a measure of the fit of the model to the true
data distribution µ.

I Examples of the measure of the fit include:
I likelihood ratio (LR): F (Mj , µ) = Eµ

[
log fj(Z, θ

∗
j /f0(Z)

]
;

I regression SSE: F (Mj , µ) = Eµ

[
−
∣∣Y − gj(Z, θ∗j )

∣∣2];
I LR or SSE with AIC or BIC penalization.
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Model Selection Test for Large Model
I We consider the general form

F (Mj , µ) = max
θj∈Θj

Eµ [mj(Z, θj)]

for a known function mj(·, ·) and a set of parameters Θj with
j = 1, 2.

I Large Model: we assume θj is “large/high dimensional” in the
sense that:

I θj contains unknown function or;
I θj ’s dimension increases with sample size n.

I The first case includes all semi/non-parametric likelihood or
regression models.

I The second case approximates parametric models with many
parameters (Cameron-Heckman: > 70, Coate-Conlin:> 40)

I We only need one of the two models to be “large”.
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Literature

I Model selection test for “small models”: Vuong (1989),
Kitamura (2000), Rivers and Vuong (2002), Marmer and Otsu
(2012), Schennach and Wilhelm (2013), Shi (2013).

I Model selection test for “large models”: Lavergne and Vuong
(1996), Chen, Hong and Shum (2007).

I The theory of these papers are based on first-order asymptotic
approximation (except Shi (2013)).

I The first-order asymptotic approximation is not good in most
large model applications. Tests derived therefrom can be
severely size-distorted. (Shi, 2013).
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The Contribution of This Paper

I We develop asymptotic theory for the natural statistics that
takes into account the second order terms.

I The new asymptotic approximation motivates a new robust
test that has correct asymptotic size.

I It has correct asymptotic size no matter the compared models
are nested or non nested, strictly or weakly non nested, far or
close to each other.

I The models we deal with include those in Lavergne and Vuong
(1996), and Chen, Hong and Shum (2007) as special cases.

I Comparing to the robust test for small models in Shi (2013),
the new robust test for large models is simpler to use.
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Nonparametric Tools
I For the j-th model, θj is estimated via sieve M estimation:

θ̂j,n = arg max
θj∈Θj,n

1

n

n∑
i=1

mj(Zi, θj)

where Θj,n is either a sieve space that becomes dense in Θj as
n→∞, or a finite dimensional parameter space with
increasing dimension.

I Some properties of the sieve M estimator are known: e.g.,
consistency in White and Wooldridge (1991), rate of
convergence in Shen and Wong (1994), root-n normality in
Shen (1997), Chen and Shen (1998), and pointwise normality
in Chen, Liao and Sun (2012).

I This paper contributes to the sieve M estimation literature by
providing the asymptotic distribution of a quadratic form of
the score function.
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Quasi Likelihood Ratio Statistic

I Recall the null hypothesis:

H0 : max
θ1∈Θ1

Eµ [m1(Zi, θ1)] = max
θ2∈Θ2

Eµ [m2(Zi, θ2)] .

I θ∗j : pseudo true value, i.e θ∗j = arg maxθj∈Θj
Eµ [mj(Zi, θj)].

Then
H0 : Eµ [m1(Zi, θ

∗
1)] = Eµ [m2(Zi, θ

∗
2)] .

I Consider the natural quasi-likelihood ratio statistic:

Q̂LRn =
1

n

n∑
i=1

[
m1(Zi, θ̂1,n)−m2(Zi, θ̂2,n)

]
.

I Need to derive the asymptotic distribution of Q̂LRn to
conduct inference on the null hypothesis H0.
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QLR – First Order Asymptotic Distribution

I We can decompose the Q̂LRn as

Q̂LRn = n−1
n∑
i=1

[
m1(Zi, θ̂1,n)−m2(Zi, θ̂2,n)

]
= n−1

n∑
i=1

[m1(Zi, θ
∗
1)−m2(Zi, θ

∗
2)]

+ vn

[
m1(Z, θ̂1,n)−m2(Z, θ̂2,n) +m2(Z, θ∗2)−m1(Z, θ∗1)

]
− Eµ

[
m1(Z, θ̂1,n)−m2(Z, θ̂2,n)−m1(Z, θ∗1) +m2(Z, θ∗2)

]
where vn [f(Zi, θ)] = 1

n

∑n
i=1 [f(Zi, θ)− E [f(Zi, θ)]].
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QLR – First Order Asymptotic Distribution

I By the stochastic equicontinuity, we have

vn

[
m1(Z, θ̂1,n)−m2(Z, θ̂2,n) +m2(Z, θ∗2)−m1(Z, θ∗1)

]
= vn

[
m1(Z, θ̂1,n)−m1(Z, θ∗1)

]
− vn

[
m2(Z, θ̂2,n)−m2(Z, θ∗2)

]
= op(n

− 1
2 ).

I Under some smoothness conditions,∣∣∣Eµ [m1(Z, θ̂1,n)−m2(Z, θ̂2,n)−m1(Z, θ∗1) +m2(Z, θ∗2)
]∣∣∣

≤
∣∣∣Eµ [m1(Z, θ̂1,n)−m1(Z, θ∗1)

]∣∣∣+
∣∣∣Eµ [m2(Z, θ̂2,n)−m2(Z, θ∗2)

]∣∣∣
≤ const.×

[∥∥∥θ̂1,n − θ∗1
∥∥∥2

S
+
∥∥∥θ̂2,n − θ∗2

∥∥∥2

S

]
= op(n

− 1
2 )

where ‖·‖S denotes some metric defined on Θj .

10 / 61



QLR – First Order Asymptotic Distribution
I Under H0, easy to derive the first-order asymptotic dist’n

n
1
2 Q̂LRn = n−

1
2

n∑
i=1

[m1(Zi, θ
∗
1)−m2(Zi, θ

∗
2)] + op(1)

→d N(0, ω2
A), where

ω2
A = lim

n→∞
Var

[
n−

1
2

n∑
i=1

[m1(Zi, θ
∗
1)−m2(Zi, θ

∗
2)]

]
.

I First-order asymptotic test:

ϕF.O.n (α) = 1


∣∣∣n 1

2 Q̂LRn

∣∣∣
ω̂A

> zα/2


where ω̂2

A = V̂arn
[
m1(Z, θ̂1,n)−m2(Z, θ̂2,n)

]
.

I The first order asymptotic theory is fragile in large models.
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MC Illustration
I Suppose that the data are from

Y = X1θ1 +X2θ2 + θ3 (X3,1 + . . .+X3,K) + u

where X1, X2, X3,j and u are independent standard normal;
I Consider the following two models

M1 : Y1 = X1β1 +X2β2 + u1;

M2 : Y2 = X1β1 +X3,1β3,1 + . . .+X3,Kβ3,K + u2;

I We set θ1 = 0.5 and θ3 = θ2K
− 1

2 such that the null: H0 :

E
[
(Y1 −X1β1 −X2β2)2

]
= E

(Y1 −X1β1 −
K∑
k=1

X3,kβ3,k

)2


holds for any K and any θ2.
I We investigate the finite sample densities of the first order LR

statistic and our robust LR statistic with 10,000 replications.
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MC Illustration

Figure 1. Density of the LR-test Statistic (θ2 = 0.5)
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MC Illustration

Figure 2. Density of the LR-test Statistic (θ2 = 0.5)
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MC Illustration

Figure 3. Density of the LR-test Statistic (θ2 = 0.5)
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MC Illustration

Figure 4. Density of the LR-test Statistic (θ2 = 0.5)

16 / 61



MC Illustration

Figure 5. Density of the LR-test Statistic (θ2 = 0.5)
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MC Illustration

Figure 6. Density of the LR-test Statistic (θ2 = 0.5)
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MC Illustration

Figure 7. Density of the LR-test Statistic (θ2 = 0.5)
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MC Illustration

Figure 8. Densities of the LR and Robust LR Statistics (θ2 = 0.5)
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MC Illustration

Figure 9. Densities of the LR and Robust LR Statistics (θ2 = 0.5)
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MC Illustration

Figure 10. Densities of the LR and Robust LR Statistics (θ2 = 0.5)
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MC Illustration

Figure 11. Densities of the LR and Robust LR Statistics (θ2 = 0.5)
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MC Illustration

Figure 12. Densities of the LR and Robust LR Statistics (θ2 = 0.5)
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MC Illustration

Figure 13. Densities of the LR and Robust LR Statistics (θ2 = 0.5)
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MC Illustration

Figure 14. Densities of the LR and Robust LR Statistics (θ2 = 0.5)
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MC Illustration

Figure 15. Densities of the LR test Statistics (θ2 = 0)
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MC Illustration

Figure 16. Densities of the LR test Statistics (θ2 = 0)
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MC Illustration

Figure 17. Densities of the LR test Statistics (θ2 = 0)
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MC Illustration

Figure 18. Densities of the LR test Statistics (θ2 = 0)
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MC Illustration

Figure 19. Densities of the LR test Statistics (θ2 = 0)
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MC Illustration

Figure 20. Densities of the LR test Statistics (θ2 = 0)
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MC Illustration

Figure 21. Densities of the LR test Statistics (θ2 = 0)
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MC Illustration

Figure 22. Densities of the LR and Robust LR Statistics (θ2 = 0)
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MC Illustration

Figure 23. Densities of the LR and Robust LR Statistics (θ2 = 0)
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MC Illustration

Figure 24. Densities of the LR and Robust LR Statistics (θ2 = 0)
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MC Illustration

Figure 25. Densities of the LR and Robust LR Statistics (θ2 = 0)
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MC Illustration

Figure 26. Densities of the LR and Robust LR Statistics (θ2 = 0)
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MC Illustration

Figure 27. Densities of the LR and Robust LR Statistics (θ2 = 0)
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MC Illustration

Figure 27. Densities of the LR and Robust LR Statistics (θ2 = 0)
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MC Illustration

Figure 28. Densities of the LR and Robust LR Statistics (θ2 = 0)
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The Second Order Expansion of QLR

I Let mi(θ) = m1(Zi, θ1)−m2(Zi, θ2), where θ′ = (θ′1, θ
′
2).

I To make the presentation simple, let’s focus on nonparametric
models: θ∗j is an unknown function and the sieve space

Θj,n =
{
θj : θj = P ′kjβkj ,j with βkj ,j ∈ Bkj

}
where Pkj : vector of sieve basis functions and kj : dimension
of sieve space.

I Define Θn = Θ1,n ×Θ2,n, Pk =

(
Pk1 0
0 Pk2

)
and

β′k = (β′k1,1, β
′
k2,2

). Then for any θ ∈ Θn, we can write
θ = P ′kβk.

I Also let’s assume mi(P
′
kβ) is differentiable in θ a.e.
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The Second Order Expansion of QLR

I Under some regularity conditions, we show that

n
1
2 Q̂LRn =

F.O.︷ ︸︸ ︷
n−

1
2

n∑
i=1

[m1(Zi, θ
∗
1)−m2(Zi, θ

∗
2)]

S.O.︷ ︸︸ ︷
−2−1n

1
2 (β̂k,n − β∗k)′Hn,k(β̂k,n − β∗k)

+op(n
− 1

2 (k1 + k2)
1
2 )

where Hn,k = Eµ

[
∂mi(P

′
kβ
∗
k)

∂β′k∂βk

]
.

I Var(F.O.) =Var[m1(Zi, θ
∗
1)−m2(Zi, θ

∗
2)] = ω2

F.O..

I S.O. = Op(n
1
2 )
∥∥∥β̂k,n − β∗k∥∥∥2

= Op((k1 + k2)n−
1
2 ).
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The Second Order Expansion of QLR

I Var(F.O.) = ω2
F.O. and S.O. = Op((k1 + k2)n−

1
2 ).

I Cases where ω2
F.O. is too small relative to Var(S.O.) for finite

n:
I Strict degeneracy: ω2

F.O. = 0 (m1(Z, θ∗1) = m2(Z, θ∗2) a.e.)
e.g. both are likelihood models and correctly specified.
e.g. both are regression models and share the nonredundant
regressors.

I Near degeneracy in large models: ω2
F.O. is small and k1 + k2 is

relatively large
e.g. both likelihood models are mildly misspecified
e.g. regressors of both regression models overlap and/or are
correlated

I The second order term may not be negligible in finite samples
even when two models are strictly non-nested.
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Degeneracy

I In these degenerate cases, F.O. cannot dominate S.O..

I Thus, n
1
2 Q̂LRn
ω̂A

is not close to N(0, 1) even in the asymptotic
sense.

I Causing size distortion for the first-order asymptotic test.
I There may be (severe) over rejection because

E [S.O.] ≈ −1

2
n−

1
2E

([
∂mi(P

′
kβ
∗
k)

∂β′k

]
H−1
n,k

[
∂mi(P

′
kβ
∗
k)

∂β′k

]′)
may be (very) different from zero.

I The problem actually is more complicated because there is
second order term in ω̂2

A as well.
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Robust Asymptotic Theory
I The second order term can be further decomposed as

S.O. =

≡bn︷ ︸︸ ︷
−2−1n−

3
2

n∑
i=1

[
∂mi(P

′
kβ
∗
k)

∂β′k

]
H−1
n,k

[
∂mi(P

′
kβ
∗
k)

∂β′k

]′
≡Un︷ ︸︸ ︷

−n−
3
2

n∑
i=2

[
∂mi(P

′
kβ
∗
k)

∂β′k

]
H−1
n,k

 i−1∑
j=1

∂mj(P
′
kβ
∗
k)

∂β′k


+op(n

− 1
2 (k1 + k2)

1
2 );

I Var(Un) = ω2
Un

= n−1
2n2

∑k1+k2
s=1 λ2

s, where λs is the eigenvalue

of D
1
2
n,KH

−1
n,kD

1
2
n,K and

Dn,K = Eµ

[(
∂mi(P

′
kβ
∗
k)

∂β′k

)′(∂mi(P
′
kβ
∗
k)

∂β′k

)]
.
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Robust Asymptotic Theory

I Now the QLR statistic can be written as

n
1
2 Q̂LRn =

F.O.︷ ︸︸ ︷
n

1
2 vn [mi(θ

∗)] +

S.O.︷ ︸︸ ︷
bn + Un + op(n

− 1
2 (k1 + k2)

1
2 ),

I That is

n
1
2 Q̂LRn − bn

σn
=
n

1
2 vn [mi(θ

∗)] + Un
σn

+op(σ
−1
n n−

1
2 (k1+k2)

1
2 ),

where σ2
n = ω2

F.O. + ω2
Un

=Var[mi(θ
∗)] + n−1

2n2

∑k1+k2
s=1 λ2

s.
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Robust Asymptotic Theory

Theorem (Robust Asymptotic Distribution)
Under H0 and regularity conditions, if n−1σ−2

n (k1 + k2) = O(1)
and sups,n λs <∞, then

n
1
2 Q̂LRn − bn

σn
=
n

1
2 Q̂LRn − bn√
ω2
F.O. + ω2

Un

→d N(0, 1).

I The theorem allows ω2
F.O. = 0, also allows ω2

F.O. to depend on
n and ω2

F.O. → 0 at any rate. Thus robust to degeneracy.

I When limω2
F.O. = ω2

A > 0, bn and ω2
U become smaller order

terms. The above theorem is also valid.
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Robust Test

I We show that
ω̂2
A − (σ2

n + ω2
Un

)

σ2
n

→p 0

where ω̂2
A = V̂arn

[
m1(Z, θ̂1,n)−m2(Z, θ̂2,n)

]
;

I This implies that ω̂2
A is an inconsistent variance estimator.

I Analysis of the F.O. Asy. Theo:

n
1
2 Q̂LRn
ω̂A

=
σn
ω̂A

bn + n
1
2 Q̂LRn − bn
σn

+ op(1)

=
σn
ω̂A

[
bn
σn

+
n

1
2 Q̂LRn − bn

σn

]
+ op(1)

where there are a scaling bias σn
ω̂A

and a additive bias bn
σn

.
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Robust Test

I We show the plug-in estimators b̂n and ω̂2
Un

are consistent:

b̂n − bn
σn

= op(1) and
ω̂2
Un
− ω2

Un

σ2
n

= op(1),

which implies that

√
nQ̂LRn − b̂n

σn
=

√
nQ̂LRn − bn

σn
+ op(1);

and
(ω̂2
A − ω̂2

Un
)

σ2
n

→p 1.

I Therefore,
√
nQ̂LRn−b̂n√
ω̂2
A−ω̂

2
Un

→d N(0, 1)
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MC Illustration

Figure 27. Densities of the LR and Robust LR Statistics (θ2 = 0)
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Robust Test

I Using the results in the previous slide, we get

ϕRob−Asyn (α) = 1


∣∣∣n 1

2 Q̂LRn − b̂n
∣∣∣

σ̂n
> zα/2


I Our general formula of σ̂n:

σ̂2
n = max{ω̂2

A − ω̂2
Un
, ω̂2

Un
}.

to ensure that σ̂n > 0.
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Robust Test – Nested Case

I When the models are known to be nested, we have

n
1
2 Q̂LRn − bn√
ω2
F.O. + ω2

Un

=
n

1
2 Q̂LRn − bn

ωUn

→d N(0, 1);

I The inference based on σ̂n is still asymptotically valid;
I However, more accurate inference of the null hypothesis would

be

ϕRob−Asyn (α) = 1


∣∣∣n 1

2 Q̂LRn − b̂n
∣∣∣

ω̂Un

> zα/2

 .
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Bootstrap

I A bootstrap critical value may be used in place of zα.

I Let Q̂LR
∗
n be computed from the same formula as Q̂LRn

except using the nonparametric i.i.d. bootstrap sample instead
of original sample. And let

σ̂2,∗
n = ω̂2

A + ω̂2
Un
,

I Let cvBTn (α) be the 1− α quantile of the conditional (on
data) distribution of

n
1
2 Q̂LR

∗
n − n

1
2 Q̂LRn − b̂n

σ̂∗n

I We show that cvBTn (α)→p zα: this bootstrap is consistent.
I Note: both the recentering and the bias correction are needed.
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Score Bootstrap

I The bootstrap above requires recomputing θ̂n for every
bootstrap sample, which can be demanding in some problems.

I Thus we also propose a score-based bootstrap critical value,
which is also consistent.

I Let Q̂LR
S,∗
n = 1

n

∑n
i=1m(Z∗i , θ̂n) and

S∗n = 1
n

∑n
i=1

∂m(Z∗i ,P
′
kβ̂k)

∂βk
.

I Let the score bootstrap critical value cvSBTn (α) be the 1− α
quantile of the conditional (on data) distribution of

n
1
2 Q̂LR

S,∗
n − n

1
2 Q̂LRn −

√
n

2 S
∗′
nH

−1
n,kS

∗
n − b̂n

σ̂∗n
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Nonparametric Exogeneity Test
I Our test applies to nonparametric exogeneity testing.
I Let Y be a dependent variable, X an explanatory variable, and

the structural model says

Y = g(X) + ε

Maintain E(Z|ε) = 0; want to test the exogeneity of X.
I Under exogeneity, we have E [ε|Z,X] = 0 which implies that

E [Y |Z,X] = E [Y |X] = g(X).

I Thus exogeneity is rejected if the following H0 is rejected:

H0 : E
[
|Y − θ1(Z,X)|2

]
= E

[
|Y − θ2(X)|2

]
where θ1(Z,X) = E [Y |Z,X] and θ2(X) = E [Y |X].

I This falls into our framework, and two models are nested.
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Nonparametric Exogeneity Test

I Difference with Blundell and Horowitz (2007):
I Our exogeneity is a joint one: E [ε|Z,X] = 0;
I BH defines exogeneity as separate: E [ε|Z] = 0 and
E [ε|X] = 0;

I Both we and BH maintain: E [ε|Z] = 0.

I Design (same as BH): X = Φ(ξ), Z = Φ(ζ), ζ ∼ N(0, 1),
ξ = ρζ +

√
1− ρ2u, u ∼ N(0, 1),

Y = β0 +Xβ1 + σεε

where ε = ηu+
√

1− η2v, v ∼ N(0, 1) and σε = 0.2.
I X is exogenous if and only if η = 0. ρ controls the strength of

instrument Z.
I Number of Monte Carlo repetitions: S = 1000.
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Nonparametric Exogeneity Test

Table 1. Rejection Probabilities of Nonpar Exog Test (α = 0.05)
n ρ η F.O. Asy. Rob. Asy. BT Score BT BH∗

250 .35 .00 .007 .078 .063 .059 .042
250 .35 .15 .019 .139 .108 .110 .077
250 .35 .25 .043 .249 .218 .216 .119
750 .35 .00 .004 .067 .052 .051 .048
750 .35 .15 .053 .263 .219 .217 .274
750 .35 .25 .209 .576 .523 .510 .596

*: BH simulation results are taken from Blundell and Horowitz
(2007).
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Non nested Linear Regression
I Regression models:

M1 : Y = β0,1 +X ′1β1,1 + u1 with E [u1|X1] = 0;

M2 : Y = β0,2 +X ′2β1,2 + u2 with E [u2|X2] = 0;

I Assume that the regressors X1 and X2 are not subsets of each
other. Thus models are non nested.

I We want to compare the two models by their regression MSE:

H0 : E
[(
Y − β∗0,1 −X ′1β∗1,1

)2]
= E

[(
Y − β∗0,2 −X ′1β∗1,2

)2]
I DGP: (X ′1, X

′
2, u) ∼ N(0, Ik1+k2−1) and

Y = 1 +
a1X

′
11k1−1√
k1 − 1

+
a2X

′
21k2−1√
k2 − 1

+ u.

I H0 holds if and only if a1 = a2, and ω2
F.O. = 0 if a1 = a2 = 0;

I Consider K1 = 12; K2 = 3.
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Nonparametric Exogeneity Test

Table 2. Results for the Nonpar Exog Test with α = 0.1

n (a1, a2) F.O. Asy. Rob. Asy. BT Score BT
250 (.25, .25) .248 .120 .094 .128
250 (.00, .00) .467 .145 .103 .154
250 (.00, .25) [.010,.034]∗ [.000,.502] [.000,.453] [.000,.523]
500 (.25, .25) .169 .117 .107 .117
500 (.00, .00) .444 .142 .113 .154
500 (.00, .25) [.000,.358] [.000,.850] [.000,.842] [.000,.862]

*: The test done is a 2-sided test. The numbers in the brackets are:
[prob. of rejection H0 and in favor of Model 1,

prob. of rejecting H0 and in favor of Model 2]
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Conclusion

I We developed a robust model selection test for large models.

I The test may use standard normal, bootstrap or
score-bootstrap critical value.

I It applies to both nested and non nested models, both strictly
nonnested or overlapping models.

I We are extending the test to time-series context. (Models for
copula dependence, forecasting quality, etc.)
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