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Abstract

How does an increase of the group size affect the public goods contribution
made by group members? We analyze this question using a framework in
which group members interact repeatedly and their temporary ability of pro-
ducing public goods is private information. We show that the group-size
effect is positive in relatively small groups, and negative in relatively large
groups. This result provides a unified explanation for the previous empirical
and experimental findings about the group-size effect.

1 Introduction

This paper is concerned with the dynamic aspect and cooperative behavior in

the problem of private provision of public goods. In reality, many public goods

problems are characterized by the repeated interaction among potential contribu-

tors. The examples include the repetition occurring in the online communities for

writing product reviews, sharing movie or music files, and asking and answering

questions, the computer programmer communities for developing open-source soft-

ware, the problem-solving team in firms for coming up with ideas and improving

production process, and the charity groups for fund-rasing. As in the nature of a
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dynamic problem, what often happens is that potential contributors can be tem-

porarily constrained with their ability of making contributions. Members in the

online community may lack useful information to share, computer programmers or

workers may not have good ideas to progress the improvement, donators may be

financially constrained so they cannot donate money. In this paper, we build on

these two important observations and develop a framework to study the coopera-

tion building in a contributor group. In particular, we provide an answer to one

classical question in the public goods literature, which is how an increase of the

group size affects cooperation, namely, the group-size effect.

We consider a model with infinite horizon, pure public goods and fully selfish

individuals. In each period, each group member receives a personal shock on his

ability of making contribution and he can make contribution only if the shock is

positive. Whether he can make contribution is his private information. Most im-

portantly, making contribution is not individually beneficial if those members only

interact once. In the baseline model, we assume that one unit of contribution is

enough for the whole group to consume. Group members are not allowed to com-

municate directly and they can only base their decisions on what has been publicly

observed in the past. Since it is not of an individual member’s personal interest to

make contribution if the group members only interact once, the incentive for making

contribution comes from the repeated interaction.

While it is not surprising that repeated interaction can provide incentive to

cooperate, the mechanism through which the incentive is provided is novel here. In

any period in the cooperative phase, an able member faces the following trade-off.

On the one hand, he will incur a loss if he makes contribution and he can still enjoy

public goods consumption if he does not but someone else does. On the other hand,

it is possible that in some future period he may be unable to make contribution

and his consumption will totally rely on the provision from other members. This

benefit can be realized only if the cooperation in the group has not broken down

by then and his free-riding behavior today may trigger the punishment and break

down the cooperation. Then, under the threat of terminating cooperation, able

members choose to contribute when they are suffi ciently patient. Thus, we provide

an explanation for why people choose to make public goods contribution even when

altruism and warm glow do not play a role.

The most important result we derive is that of group-size effect. We find that,

the able members’ incentive to contribute becomes stronger when the group size

gets larger if the initial group size is small, and the incentive becomes weaker when
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group size reaches a certain level and continues to expand. In short, the group-size

effect is positive in the small groups but negative in the large groups. As in the

standard models with pure public goods, free-riding problem becomes more severe

when the group becomes large. Every able member knows that, since the group

is large it is highly likely that some other member in the group is also able to

make the contribution, and therefore the probability that his own deviation triggers

punishment becomes smaller. The increase of group size thus has negative impact on

able members’incentive. But there is also a positive impact induced by the increase

of group size. Remember that the incentive to cooperate purely comes from the

future benefit a member can get when he is unable but some other members are

able. In a large group, the probability that some other members are able is large in

any period. The later mechanism, which we call “large-scale effect”is the key force

driving up able members’incentive to contribute.

Since both large-scale effect and free-riding effect are increasing when the group

becomes larger, towards which direction the group-size effect goes is not immediately

clear. Our result shows that the large-scale effect dominates in the small group

while the free-riding effect dominates in the large group. The most intuitive way

to understand this result is to consider the limit cases while ignoring the integer

constraint of group size. When there is only one person in the group, he will never

incur the cost as there is no future benefit to expect at all. When there is an infinite

number of members in the group, no able member will contribute as the probability

that his deviation triggers punishment is zero. Then, if there is a cooperation to

take place, it has to happen in a medium size group.

The existing theories have diverse predictions about how group size affects public

good contributions, but these predictions are usually monotone towards one direc-

tion. In the canonical setting, group members provide pure public goods and how

much contribution that each individual makes depends on the amount of contri-

bution made by other individuals (Olson, 1965, Chamberlin, 1974 and Andreoni,

1988). When the group becomes large, an individual’s marginal return of supply-

ing public goods diminishes and he will be better off by spending more resources

on private consumption. That is, the free-riding problem becomes severe and the

individual contribution monotonically decreases as the group size becomes larger.

Although being theoretically sharp, the argument that free-riding always dominates

fails to explain why individual contribution does not drop significantly when many

real world communities become increasing popular. To address this inconsistency,

economists recently introduce a private benefit or warm glow, such as moral satis-
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faction and joy of giving, into their models (Steinberg, 1987, Andreoni, 1989, 1990).

Then, how group-size effect works depends on how warm glow is modeled in contrib-

utors’utility function. For example, if the warm glow increases with the number of

recipients, then the free-rider problem can vanish even in a large group (Andreoni,

2007).

Empirical studies, mostly based on experimental data, gives ambiguous evidence

of group-size effect. Among the recent contributions, Ledyard (1995) finds that free-

riding behavior increases with the group size, Goeree, Holt and Laury (2002) find no

clear group-size effect, while Zhang and Zhu (2010) find that an exogenous decrease

of group size lowers the remaining contributors’average contribution on Chinese

Wikipedia. The evidence of non-monotonic group-size effect is shown by Issac and

Walker (1988) and Issac, Walker and Williams (1994). They investigate the free-

riding problem and group-size effect in a experiment using different group size. The

experiment was run for 60 decision rounds and each individual’s endowment in each

round was their private information. The authors find that, in the relatively small

group (size from 4 to 10), the increase of group size leads to higher contribution,

but in the relatively large group (size from 40 to 100), the group size effect vanishes.

We feel our result regarding group-size effect is of interest not only because it

matches up well with the experiment findings shown by Issac and Walker (1988)

Issac, Williams and Walker (1994), but also because it sheds light on issues on

the optimal design of communities. One phenomenon we often see in the online

community is that the interactions and contributions fluctuate over time and across

communities. Many once prosperous communities suddenly become quiet, some of

them start to revive later on and some of them collapse since then. Also, many

communities start with open membership in their early stage but after becoming

mature switch to restricted membership, namely only limited new members are

permitted to join for a given period. Some initially free-to-join groups at some

point start to charge membership fees. These observations partly suggest that the

community members might tacitly use collective punishment after observing the

scarcity of contribution and the community managements can restrict the group

size to mitigate free-rider problem. All these observations are consistent with our

theory.

Our paper is also related to other two strands of literature. First, it is related

to the large literature on dynamic free-rider problems. The classical contributions

include, Fershtman and Nitzan (1991) who study a dynamic public goods contri-

bution game; Marx and Matthews (2000) who study a project-building problem in
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which the benefit only realizes if enough fund is raised for the project; Lockwood

and Thomas (2002) who study a repeated prisoner dilemma with irreversible con-

tribution. In all these models, the contribution today directly impacts group mem-

bers’consumption tomorrow and thus are (partially) durable. Our model abstracts

from this intertemporal connection and focuses on the non-durable contribution.

Although the repetitive aspect is important and common in the real-world public

goods provision scenarios, very little has been done on this topic. The only paper

that we are aware of is Pecorino (1999) who also analyzes the group-size effect in

the public goods provision using a repeated game framework. However, Pecorino

assumes that every group member is able to make contribution at any time and

the monitoring in the group is perfect. He focuses mainly on the large market and

shows that cooperation can be sustained even when the group consists of an infinite

number of individuals. One important ingredient of our model is the temporary

constraint on members’ability of making contribution, which in turn gives rise to

the large-scale effect. Since the ability of making contribution is members’private

information, the monitoring of each group member is public but imperfect. Also,

our study of group-size effect is conducted for groups with finite members which

allows us to explicitly compare the incentive to contribute between two groups with

different but finite sizes.

The second strand of literature to which our paper is related is the research that

attempts to provide a theoretical explanation for modern firms’successful practice

of using team production, especially, how the free-riding problem in teams can be

mitigated. Holmstrom (1982) shows that free-riding problem is generic in the team

production and a principal, who serves as a budget break, may correct such ineffi -

ciency. Different from Holmstrom (1982) and all the following up works, our model

does not build on an agency framework. Kandel and Lazear (1992) develop a theory

in which free-rider problem can be alleviated by the peer pressure exserted by other

team members. Since all team members’payoffs depend on the total performance,

members indeed have incentive to impose pressure on their team mates through

physical or mental punishment if shirking is detected. Then, peer pressure may give

rise to a high effort. One immediate implication that Kandel and Lazear draw is that

the strategic use of peer pressure enhances effort more effectively when team mem-

bers are homogeneous as they understand their co-workers’tasks and can effectively

monitor each other. In contrast, our theory will work better with heterogeneous

workers in the team context. Different workers coming up with different ideas at

different time is the source of incentive provision in our model. An able worker will
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public good provided public good not provided
unable member u 0
able member v w

Table 1: Individual one-period payoffs.

work hard to help his team only if he knows that in some future period he has to

rely on his team mates who have the idea that he does not have to enhance team

performance.

The outline of the paper is as follows. Section 2 describes the setup of our

baseline model. Section 3 characterizes the equilibrium. Section 4 states the main

result regarding group-size effect. Section 5 extends the baseline model to various

directions and examines robustness of our main finding. Section 6 concludes.

2 Model

Consider an infinite-horizon model. A group of N risk-neutral infinitely-lived

individuals can produce one unit of public good in each period. Public goods are

assumed not to accumulate over time. The group members cannot directly commu-

nicate or make monetary transfers.

We assume that some of the group members might be incapable to contribute

to the public good production in some periods. Formally, in each period, a group

member receives a personal shock which is independent and identically distributed

across periods and individuals. A member is able to contribute one unit of the public

good with probability q, and is not able to contribute with probability 1 − q. In

what follows, we call the former an able member while the latter an unable member.

Nt denotes the number of able members in period t where Nt ∈ {0, 1, ..., N}.
We study first a benchmark case in which individual contributions do not accu-

mulate within one period. If at least one individual contributes in period t then the

public good is produced in that period. Then an able member gets payoff v ≥ 0
while an unable member gets u > 0. Additional contributions generate no extra

payoffs to the group members. However, if no member contributes in period t then

the public good is not provided in that period and an able member gets w ≥ 0

while an unable member gets 0. The member’s individual one-period payoffs are

summarized in Table 1.

Public good provision is costly. In particular, an able member incurs a fixed cost

c of providing one unit of the public good. We assume that c > v which implies that
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the cost of production exceeds the private benefits for a contributor. It follows that

no contribution will be made in a stage game. Moreover, we assume that 0 ≤ w ≤ v

which means that an able member’s utility from the public good consumption is

weakly higher than his utility from no public good option.

We assume that the group members use symmetric pure strategies. We relax this

assumption in Section 5.1 in which we consider correlated equilibrium. Suppose now

that all able members contribute to the public good provision. Then the member’s

individual one-period ex-ante payoff is given by q (v − c) + (1− q) (1− α)u, where
α ≡ (1− q)N−1 is the probability that there are no other able members in the group.
Suppose next that no able member contributes to the public good provision. Then

the member’s individual one-period ex ante payoff is qw. The following assumption

guarantees that it is ex ante socially optimal that all able members contribute to

the public good production.

Assumption 1 q (v − c− w) + (1− q) (1− α)u ≥ 0.

The timing of events within one period is as follows. First, able members are

randomly drawn by nature. Each member’s ability to contribute to the public good

production is his private information. Second, able members simultaneously and

independently decide whether to contribute or not. Finally, all members observe

whether the public good is provided and get corresponding payoffs.

Our framework is quite general and can be used to analyze different applications.

We provide now several examples and turn then to equilibrium characterization.

Peer-to-Peer Networks Consider a file-sharing network of internet users. In
each period, some users (with probability q) get a rare file of value w > 0 and choose

whether to share it with the rest of the group. Sharing the file does not generate

extra benefits for the users, i.e., v = w. The cost of sharing is c. If the file is

distributed then the rest of the group gets benefit u > 0.

Intelligence Agencies Think of a group of countries facing a common threat
(e.g., terror threat). In each period, an intelligence service of each country might get

a piece of relevant information which can be then revealed at cost c to intelligence

services of other countries. This would obviously benefit uninformed countries (u >

0) but would bring no extra benefit to informed ones (v = w > 0).

Online Reviews In each period, a new restaurant is opened. Some consumers
might learn by chance how good it is (with probability q). They then decide whether

to post an online review about the restaurant quality. Posting a review is costly and

implies no extra benefits for the informed consumers, i.e., v = w. Still, posting a
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review would benefit the uninformed consumers by generating net payoff u > 0 for

them.

Open Source Software Consider an open source software application. With
probability q each programmer comes up with an idea of how to improve the applica-

tion (e.g., fixing bugs, improving effi ciency, etc.) and then decides whether to make

this improvement. The cost of improving the application is c. Each programmer

gets benefit v = u > 0 if the software is upgraded, and w = 0 otherwise.

Teamwork Think of a team which is assigned a new task every period. With

probability q each member knows how to perform the task at cost c. If the team suc-

ceeds in solving the task then each team member gets benefit v = u > 0. However,

if the team fails then each member gets w = 0.

3 Equilibrium Characterization

Consider first a single stage game. In this case, able members will not contribute

to the public good production since the cost exceeds their private benefits from

contributing. This is the unique equilibrium in the static setting.

We turn next to the repeated setting in which all group members observe whether

the public goods have been provided or not in the previous periods. The equilibrium

strategy we consider is similar to that in Green and Porter (1984) and includes

a cooperation phase and a punishment phase. An able member cooperates (i.e.,

contributes to the public good provision) in the cooperation phase and punishes

(i.e., does not contribute) in the punishment phase. Punishment lasts for T periods

and afterwards cooperation is restored.

We denote the state in period t by wt ∈ {0, 1}. wt = 0 if in period t the game is
in the punishment phase while wt = 1 if it is in the cooperation phase. At the end of

each period, the group members observe whether a public good has been provided

in this period or not, which serves as a public signal for them. We then define the

following binary signal space
{
y, y
}
. yt = y either if wt−1 = 1 and a period-t public

good is provided, or if in period t a punishment phase has just ended. yt = y either

if wt−1 = 1 but a period-t public good is not provided, or if in period t a punishment

phase has not been yet ended. The solution concept is symmetric Public Perfect

Equilibrium (SPPE) in which the members condition their actions only on the public

history.1 Then all able members contribute to the public good production if in the

1It is well known from the literature on the repeated games with imperfect public monitoring
that using public strategy is a best response to all other members’using public strategies.
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previous period the public signal is y, and don’t contribute if in the previous period

the public signal is y. The transition between the states can be summarized as

follows:

• wt = 1 for t = 0;

• if wt−1 = 1 and yt = y then wt = 1; if wt−1 = 1 and yt = y then wt = 0;

• if wt−1 = 0 and yt = y then wt = 1; if wt−1 = 0 and yt = y then wt = 0.

We analyze now the able members’incentives to follow the prescribed strategy.

If an able member contributes to the public good production in a punishment phase

then the subsequent game will not be affected, but he gets negative net payoff

v − c−w in the current period. It follows that an able member has no incentive to
contribute in a punishment phase and therefore will follow the prescribed strategy.

If an able member contributes to the public good production in a cooperation

phase then his expected payoff is

v − c+ δV +,

where δ ∈ (0, 1) is a common discount factor and V + is the member’s value function

defined at the beginning of any period in the cooperation phase and before each

member learns whether he is able to contribute or not. By following the prescribed

strategy in the cooperation phase, the able member also ensures cooperation in the

next period.

Suppose that the able member chooses to deviate in the cooperation phase. Then

punishment will be trigged only if there are no other able members in the group.

Therefore, the expected payoff from deviating in the cooperation phase is given by

(1− α)
(
v + δV +

)
+ α

(
w + δV −

)
,

where V − is the member’s value function defined at the beginning of a punishment

phase and before each member learns whether he is able to contribute or not. As

before, α ≡ (1− q)N−1 denotes the probability that there are no other able members
in the group.

We can define the value functions V + and V − recursively. At the beginning of any

period in a cooperation phase, a member anticipates that with probability q he will

be able to contribute to the public good provision while with probability 1−q he will
not be able to do so. Following the prescribed strategy, an able member contributes
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to the public good production and gets payoff v − c + δV +. In turn, an unable

member’s payoff is determined by the rest of the group. If other group members

are able to contribute then they follow the prescribed strategy and do contribute.

This generates benefit u for the unable member and ensures cooperation in the next

period. However, if there are no other able members in the group then the public

good is not provided which triggers punishment. The unable member’s expected

payoff is δV − in this case. It follows then that

V + = q
(
v − c+ δV +

)
+ (1− q)

[
(1− α)

(
u+ δV +

)
+ αδV −

]
. (1)

At the beginning of a punishment phase, all members realize that for T periods no

public goods will be produced but afterwards cooperation will be restored. They

therefore expect per-period payoff qw for T periods and δTV + afterwards. It implies

that

V − =
T−1∑
τ=0

δτqw + δTV + =
1− δT

1− δ qw + δTV +. (2)

Substituting (2) into (1) and rearranging yields the continuation value of cooperation

V +:

V + =
(1− q) (1− α)u+ q (v − c) + (1− q)αδ

(
1−δT
1−δ

)
qw

1− qδ − δ (1− q)
(
1− α + αδT

) . (3)

An able member follows the prescribed strategy in the cooperation phase if and

only if his payoff from cooperating exceeds that from deviating:

v − c+ δV + ≥ (1− α)
(
v + δV +

)
+ α

(
w + δV −

)
. (4)

Substituting V + and V − into (4) and simplifying yields the necessary and suffi cient

condition for sustaining cooperation:

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w) − 1
)
≥ 1− δ
δ(1− δT )

. (5)

The right-hand side of (5) is a decreasing function of T . It goes to infinity when

T approaches 0, which implies that without punishment, cooperation cannot be

sustained. It converges to 1−δ
δ
when a grim-trigger strategy (under which T goes

to infinity) is applied. Therefore, a longer punishment phase makes cooperation

easier to sustain, but it also leads to the value loss on the equilibrium path because

punishment can be trigged even if no one has deviated. Since the right-hand side
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of (5) is always positive then a necessary condition for sustaining cooperation for

given T is

(1− α) (1− q)u+ [(1− α) q + α] (v − w) > c. (6)

Note moreover that the right-hand side of (5) is a decreasing function of both δ

and T . For any positive but finite T , it reaches its maximum of∞ when δ approaches

0 and its minimum of 1
T
when δ approaches 1. Thus for given T , as long as

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w) − 1
)
≥ 1

T
, (7)

and the members are patient enough, cooperation can be sustained. When a grim-

trigger strategy is used (T = ∞) so that the right-hand side of (7) becomes zero,
cooperation essentially requires the left-hand side of (7) to be positive. The result

is summarized in the following proposition. (Proofs of this and other propositions

are given in the Appendix.)

Proposition 1 As long as condition (6) holds, there exists a threshold discount fac-
tor δ ∈ (0, 1) associated with some punishment length T <∞ such that cooperation

is sustained for all δ ≥ δ.

Comparing (6) with Assumption 1 makes it clear that for some values of pro-

duction cost c, cooperation is ex ante socially optimal but it can not be sustained

in equilibrium.2 Note also that applying a grim-trigger strategy (T = ∞) is often
suboptimal as it forgoes potential surplus from cooperation by punishing forever

after one period of non-provision. As long as the able members’incentives are com-

patible with cooperation, the shorter the punishment phase the better. Therefore,

the optimal punishment length, T ∗δ , is characterized by

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w) − 1
)
=

1− δ
δ
(
1− δT ∗δ

) (8)

if the solution exists. Otherwise, without loss of generality, we set T ∗δ =∞.

4 Group-Size Effect

We turn next to the group-size effect to study the impacts of a group-size change

on the members’incentives to cooperate. Consider first the non-deviation condition

2c ∈
[
(1− α) (1− q)u+ [(1− α) q + α] (v − w) , v − w + 1−q

q (1− α)u
]
.
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(4). Substituting (2) into (4) and rearranging yields

α︸︷︷︸
free riding

δ (1− δT ) V +︸︷︷︸
large scale

+

(
v − w − δqw1− δ

T

1− δ

) ≥ c. (9)

The group size, N , only affects α and V + which are both on the left-hand side of (9).

α denotes the probability that there are no other able members in the group and so

decreases with N . This effect makes the left-hand side of (9) smaller as N increases.

V + is the continuation value of cooperation and is also affected by a change in the

group size N . The following lemma shows that an increase in N actually makes V +

(and therefore the left-hand side of (9)) larger.

Lemma 1 V + increases with N .

It follows therefore that there are two opposite forces at work when the group

size increases. The first force is the conventional free-riding effect reflected by α in

(9). Intuitively, an able member has more incentives to deviate in a larger group.

He realizes that the larger the group, the more likely there are other able members

in the group and so the less likely his own deviation is to trigger punishment. The

second force is what we call a large-scale effect, reflected by V + in (9). An able

member wants cooperation to be sustained in order to enjoy public good benefits

even in the periods when he will be unable to contribute and so will depend on the

other members’contributions. The more members there are in the group, the more

likely there will be able members in the periods when he will be unable to contribute

and so the larger the continuation value of cooperation.

We use the optimal punishment length, T ∗δ , to measure the group size effect.

Suppose that a finite solution to (8) exists when the group size is N ′. Now increase

the group size to N ′′ > N ′. If the optimal punishment length T ∗δ becomes larger

or even infinite under N ′′ then we say that the group size effect is negative. If the

optimal punishment length becomes shorter after the group size increases to N ′′,

the group-size effect is positive.

Consider the left-hand side of equation (8). If c ≥ q (v − w) + (1− q)u then
it is nonpositive for all N ≥ 2 and thus cooperation can not be sustained for any
group size. If c < q (v − w) + (1− q)u then the left-hand side of (8) is positive for
some N ≥ 2. We show that it has an inverted-U shape (i.e., first increases but then
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decreases in N) if c > ĉ where

ĉ ≡ 1
2
(v − w − (1− q) (1− 2q) (u− v + w))+

1

2

√
((1− q)u+ q (v − w)) (u− (u− v + w) (5q − 8q2 + 4q3)).

However, if c ≤ ĉ then the left-hand side of (8) strictly decreases in N . The results

are summarized in the following proposition.

Proposition 2 If ĉ < c < q (v − w)+ (1− q)u then the group-size effect is positive
in small groups but negative in large groups. If c ≤ ĉ then the group-size effect is

always negative.

According to Proposition 2, for c ≤ ĉ, free-riding effect prevails regardless of the

group size. However, for ĉ < c < q (v − w) + (1− q)u, the relationship between
the group size and cooperative incentive is non-monotonic. While an increase in

the group size intensifies both the free-riding incentives and the continuation value

of cooperation, its aggregate impact depends on the current group size. We show

that an increase in the group size enhances cooperation in relatively small groups

but hinders cooperation in relatively large groups. Indeed, in a small group, an

individual deviation is quite likely to trigger punishment and the continuation value

of cooperation is low. As the group size increases, an individual deviation is some-

what less likely to trigger punishment while the continuation value of cooperation

increases considerably. An increase in the group size then boosts the value of coop-

eration more than it boosts the free-riding incentives. In contrast, in large groups,

a group-size increase just slightly affects the continuation value of cooperation and

so enhances the free-riding incentives more than cooperative incentives. It follows

therefore that large-scale effect dominates free-riding effect only when the group size

is relatively small.

Proposition 2 therefore suggests that in case of ĉ < c < q (v − w)+ (1− q)u, for
any patience level, cooperation is easier to be sustained in medium-size groups in

which free-riding incentives and cooperative incentive are well balanced. In addition

to a sound theoretical contribution, this result provides a rationale for restrictive

membership or high membership fees which some real-world communities use in

order to limit the group size. Indeed, the trade-off between large-scale effect and

free-riding effect implies that as a group size grows, an increase in the probability

of having more able members comes at a cost of lower individual incentives, which

does not pay off in relatively large groups.
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5 Discussion and Extensions

In this section, we relax some of the important assumptions of the model and dis-

cuss robustness of our results. We first consider the case in which the group members

condition their contribution decisions on their observation of a signal. This allows

them to somewhat coordinate their decisions and so makes cooperation easier to

be sustained. We next relax the assumption of non-cumulative individual contri-

butions and study the case of linear public good technology. We show that under

some mild assumptions, our result about group-size effect holds in these extensions

of the baseline model.

5.1 Correlated Equilibrium

In the baseline model, we assume that the group members cannot directly com-

municate with each other. Though realistic in some situations, this assumption

might be too restrictive in some others. Moreover, one might underestimate the

level of cooperation in a group if coordination is completely ruled out. Indeed, in

our baseline model, every able member contributes along the equilibrium path while

only one contribution is needed for public good provision. Therefore, all but one

contributions are wasted which substantially reduces the value of cooperation.

In this section, we keep the assumption of no direct communication but suppose

that the group members base their contribution decisions on their observation of

a signal. Assume that the nature randomly determines an order of contribution

making. For example, member 1 is assigned to make contribution first, member 2

is second, ..., member i is ith. Denote by O the finite set of all possible orders. We
assume that all orders in O are realized with the equal probability. In each period,
a member observes the signal only when it is his turn to make contribution and

no contribution has been made so far in that period. The period ends either when

one contribution has been made or when all group members have been called for

contribution making. At the end of the period, all members know whether the con-

tribution has been made or not. The prescribed equilibrium strategy requires that

an able member makes contribution if he observes the signal. The punishment will

be triggered if no contribution is made in the previous period. We characterize cor-

related equilibrium in which no group member wants to deviate from the prescribed

strategy if the others don’t deviate.3

3Alternatively, one could consider mixed-strategy equilibrium in which able members randomize
between making and not making contribution.
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Although the group members still cannot directly communicate with each other,

the signal mechanism works as a coordinating device and guarantees that at most

one contribution per period is made along the equilibrium path. Therefore, the

contribution waste of the baseline model does not arise here, which implies higher

value of cooperation.

Think of the following interpretation of this setting. If each period, there might

be several members able to contribute to the public good provision. Since the

probability of two members making contribution at exactly the same time is tiny,

it is plausible to assume that the timing of contribution making is sequential. The

explanation for this might be different time availability assigned randomly to the

group members. Then an able member contributes to the public good production

only if he observes that no contribution is made so far by his peers. However, if

at the moment of contributing an able member observes that one contribution has

been already made then he does not need to contribute again. For example, if an

informed member reveals a piece of useful information to the rest of the group then

other initially informed members will not do so.

We turn next to the analysis of the able members’incentives to follow the pre-

scribed strategy. (Indeed, an unable member cannot make contribution even if he

observes the signal.) Similarly to the baseline model studied in Section 3, an able

member here has no incentive to contribute in a punishment phase and so will fol-

low the prescribed strategy. Consider now his incentives in a cooperation phase.

Suppose that an able member receives the signal and so knows that it is his turn to

contribute. The expressions for the expected payoffs from cooperating and deviating

are the same as in the baseline model except for the value functions which we denote

here by Ṽ + and Ṽ −. Obviously, the value function defined at the beginning of a

punishment phase satisfies Ṽ − = V −. The value function defined at the beginning

of any period in a cooperation phase, Ṽ +, is

Ṽ + = q
(
v − βc+ δV +

)
+ (1− q)

[
(1− α)

(
u+ δV +

)
+ αδV −

]
,

where β is the probability that conditional of being able, a member is the first one

among all able members to receive the signal. β is given by

β ≡
N−1∑
k=0

(
N − 1
k

)
qk(1− q)N−1−k 1

k + 1
=
1− (1− q)α

Nq
.

Note that along the equilibrium path in our correlated equilibrium, only the able
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member who receives the signal first, actually incurs the cost c of public good pro-

duction.

Following the similar steps as in Section 3 yields the non-deviation condition for

an able member who receives the signal:

α

(
(1− α) [(1− q)u+ q (v − w)] + (1− β) cq

c− α (v − w) − 1
)
≥ 1− δ
δ(1− δT )

. (10)

It is natural to expect that in correlated equilibrium, cooperation is easier to be

sustained than in the baseline model. Indeed, the signal mechanism generates at

most one contribution per period and so enhances the value of cooperation. As a

result, the left-hand side of (10) is strictly greater than that of (5).

We turn now to our main research question, namely, the group-size effect. It is

a priori not clear how an increase in the group size affects the members’incentives

to cooperate. To answer this question, we study the impacts of a change in N

on the left-hand side of non-deviation condition (10). Note that on the left-hand

side of (10), both α and β depend on N , and α enters both in the numerator and

denominator, which considerably complicates the analysis of the general case. Then,

to obtain a clear-cut result, we restrict our attention to the case in which an able

member gets the same level of utility from the public good consumption and from

no public good option, v = w (as in the examples of information sharing).

Consider the left-hand side of (10) for v = w. If c ≥ u then it is nonpositive

for all N ≥ 2 and therefore cooperation can not be sustained for any group size. If
c < u then it is positive for some N ≥ 2. We show that it has an inverted-U shape
(i.e., first increases and then decreases in N ≥ 2) either if q ≤ 1

2
or if q > 1

2
and

c > f̂ (q)u where

f̂ (q) ≡ 4 (1− q) (1− 2q) ln (1− q)
(2− q) q − 2 (1 + 2q (1− q)) ln (1− q) .

However, if q > 1
2
and c ≤ f̂ (q)u then the left-hand side of (10) strictly decreases

in N ≥ 2. We formalize the results in the following proposition.

Proposition 3 If q ≤ 1
2
and 0 < c < u, or if q > 1

2
and f̂ (q)u < c < u, then the

group-size effect is positive in small groups and negative in large groups. If q > 1
2

and 0 < c ≤ f̂ (q)u then the group-size effect is always negative.

Proposition 3 suggests that for a relatively large range of parameter values, the

main insights of our baseline model also hold in the case of correlated equilibrium.
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Here, because of implicit coordination generated by the signal mechanism, the prob-

ability of an able member contributing is strictly lower than 1. The more members

there are in the group, the less likely an able member is to receive the signal to

contribute. Therefore, the large-scale effect is amplified here relative to the baseline

case. As a result, in relatively small groups, the large-scale effect again dominates

the free-riding effect. Still, the important trade-off between the two effects high-

lighted in the previous section remains true in the correlated equilibrium. Indeed,

in relatively large groups, the free-riding effect dominates the (even amplified) large-

scale effect since deviation is quite unlikely to trigger punishment and thus incentives

to free ride are stronger than those to cooperate.

5.2 Cumulative Contributions

In the baseline model, we assume that individual contributions do not accumulate

within one period. We relax this assumption here to consider the setting in which

public good consumption strictly increases in the number of individual contributions,

as in the cases of dispersed information, ideas and labor input. So, if each able

member cooperates, an increase in the group size affects not only the probability of

a single unit being provided but the expected total number of contributions. Our

final goal is then to study the group-size effect in this environment.

Consider the following production technology. If the total number of contribu-

tions is k = 0, 1, ..., N then the public good of size P (k) is provided and each group

member gets utility P (k) from consuming it. So the public good production is

deterministic. Alternatively, P (k) might be interpreted as the probability of the

public good being successfully provided. We assume that P (k) is strictly increasing

in k and that P (0) = 0.

In each period, an able member decides whether to contribute one unit to the

public good production or not. The cost of contributing is c > 0. To be consistent

with our baseline model, we assume that P (k)− P (k − 1) < c for k = 1, ..., N . So,

an able member has no incentive to make contribution in a stage game. Then, the

unique equilibrium in the static setting entails no public good contribution.

We study next the repeated setting in which all group members observe the total

number of contributions made in the previous periods. As in the baseline model, the

solution concept here is SPPE. To characterize SPPE, we follow the approach devel-

oped by Abreu et al. (1986, 1990). According to this approach, a SPPE value can

be decomposed into a member’s current payoff and the continuation value, denoted
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by v (k), which is a mapping from the set of all public outcomes, k = 0, 1, ..., N ,

into the set of SPPE values, V ∗ (N, δ). Note that each able member choosing not

to contribute constitutes a SPPE and so V ∗ (N, δ) is non-empty: 0 ∈ V ∗ (N, δ).

It is also assumed that the group members have access to a public randomization

device at the end of each period. Then v (k) can be a probability distribution over

V ∗ (N, δ). As a consequence, V ∗ (N, δ) is a convex set. Then, applying Abreu et al.’s

approach, we can show that V ∗ (N, δ) is a closed interval of the form [0, v (N, δ)].

We focus the analysis on the upper bound of V ∗ (N, δ), v (N, δ), which is the

highest value a SPPE can achieve. We believe it is reasonable to do so since the

SPPE with the highest value will be a natural candidate in case the group members

have ever a chance to coordinate on equilibrium selection. To construct a SPPE, we

also have to choose a continuation value from V ∗ (N, δ). Abreu et al. (1986, 1990)

show that any value in V ∗(N, δ) can be achieved by the following trigger strategy

with the bang-bang property. At the beginning of the game, every able member

contributes to the public good provision. Then, after observing the public outcome

k, with probability 1−η (k) all group members continue to play the same cooperative
strategy in the next period, and with probability η (k) they switch to static Nash

forever. We can then find the highest value, v (N, δ), among those trigger strategy

SPPE values.

We assume without loss of generality that P (k) = k. The following problem

then characterizes the highest SPPE value, v (N, δ):

v (N, δ) = max
v,η(k)

v

s.t. v = qva + (1− q) vu,

va = (N − 1) q + 1− c+ δv

N−1∑
k=0

(1− η (k + 1))
(
N − 1
k

)
qk (1− q)N−k−1 ,

vu = (N − 1) q + δv
N−1∑
k=0

(1− η (k))
(
N − 1
k

)
qk (1− q)N−k−1 ,

va ≥ vu.

Here, va is an able member’s discounted payoff if he follows the prescribed strategy

while vu is an unable member’s discounted payoff. In each period in which co-

operation is sustained, every member expects other members to provide (N − 1) q
units of public good. Moreover, an able member also contributes one unit at cost

c. These are the members’current payoffs. The discounted continuation value of
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cooperation is δv multiplied by the probability of cooperation being sustained. The

ex ante expected value v is thus qva + (1− q) vu. In the equilibrium, the incentive
compatibility (IC) constraint has to hold so that an able member has no incentive

to mimic an unable member: va ≥ vu.

Substituting the expressions for va and vu into v and the IC constraint and

rearranging yields

v = q (1− c) + (N − 1) q + δv
N∑
k=0

(
N

k

)
qk (1− q)N−k (1− η (k)) , (11)

c− 1 ≤ δv
N−1∑
k=0

(
N − 1
k

)
qk (1− q)N−k−1 (η (k)− η (k + 1)) .

In the equilibrium, the IC constraint has to hold with equality. We prove it by

contradiction. For the IC constraint to be satisfied, some η (k) have to be strictly

greater than zero. Suppose that the IC constraint does not bind in the equilibrium.

Then, there exists at least one positive η (k) which can be decreased by a tiny

amount ε > 0 while the IC constraint is still satisfied. However, decreasing this

η (k) will increase v (since v is a decreasing function of all η (k)). Thus, this was

not an equilibrium, which leads to a contradiction.

In what follows, we use the method developed by Abreu et al. (1991). According

to this method, solving for v (N, δ) is equivalent to finding the maximum likelihood

test to detect deviation. We next show this formally. Define

L ≡
q
N−1∑
k=0

N − 1
k

qk(1−q)N−1−kη(k)+(1−q)N−1∑
k=0

N − 1
k

qk(1−q)N−1−kη(k)

q
N−1∑
k=0

N − 1
k

qk(1−q)N−1−kη(k+1)+(1−q)N−1∑
k=0

N − 1
k

qk(1−q)N−1−kη(k)
.

The numerator is the ex ante probability of triggering punishment if one able mem-

ber deviates and does not make contribution. This probability is then the measure

of punishment off the equilibrium path. The denominator is the ex ante probability

of triggering punishment if no member deviates. This probability is therefore the

measure of punishment along the equilibrium path and represents the equilibrium

value loss. Then the likelihood ratio L measures how effective the punishment is in
deterring deviation per unit of the value loss along the equilibrium path. The larger

L is, the heavier punishment is imposed on the deviator per unit of the equilibrium
value loss.
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Since

L − 1 =
q
N−1∑
k=0

N − 1
k

qk(1−q)N−1−k(η(k)−η(k+1))
N∑
k=0

N
k

qk(1−q)N−kη(k)
, (12)

then the binding IC constraint can be written as a function of L−1 in the following
way:

c− 1 = δv

q
(L − 1)

N∑
k=0

(
N

k

)
qk (1− q)N−k η (k) .

Clearly, L has to be strictly greater than 1 for the IC constraint to hold. Substituting
the IC constraint into the value function (11) yields

v =
1

1− δ

[
q (N − 1)− q (c− 1)

(
1 +

1

L − 1

)]
, (13)

which after rearranging becomes

v =
1

1− δ [(1− q) q (N − 1) + q (q (N − 1) + 1− c)]− 1

1− δ
q (c− 1)
L − 1 .

The first term above is the expected value in case cooperation can be sustained

forever. The second term is the expected loss resulting from future punishments

along the equilibrium path. (13) implies that v is a strictly increasing function of L.
Therefore, the optimal punishment scheme maximizes L subject to the binding IC
constraint, which is equivalent to finding the maximum likelihood test for detecting

deviation.

We prove in the Appendix that L reaches its maximum value when η (0) >

0, η (1) = ... = η (N) = 0; its second largest value when η (0) = 1, η (1) > 0,

η (2) = ... = η (N) = 0; its third largest value when η (0) = η (1) = 1, η (2) > 0,

η (3) = ... = η (N) = 0; ...; its kth largest value when η (0) = ... = η (k − 2) = 1,
η (k − 1) > 0, η (k) = ... = η (N) = 0. Then the optimal punishment scheme is

characterized by the public outcome k̃ ∈ {0, 1, ..., N} such that η (k) = 1 for k < k̃,

0 < η
(
k̃
)
< 1, η (k) = 0 for k > k̃. k̃ and η

(
k̃
)
are found through the following

procedure:

- set k̃ = 0 and check the IC constraint for 0 < η (0) < 1, η (k) = 0, k > 0;

if the IC constraint holds then this is the optimal punishment scheme and η (0) is

characterized by the binding IC constraint; if the IC constraint does not hold then

- set k̃ = 1 and check the IC constraint for η (0) = 1, 0 < η (1) < 1, η (k) = 0,
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k > 1; if the IC constraint holds then this is the optimal punishment scheme and

η (1) is characterized by the binding IC constraint; if the IC constraint does not hold

then

- set k̃ = 2 and check the IC constraint for η (0) = η (1) = 1, 0 < η (2) < 1,

η (k) = 0, k > 2; if the IC constraint holds then this is the optimal punishment

scheme and η (2) is characterized by the binding IC constraint; if the IC constraint

does not hold then

- move to k̃ = 3, check the IC constraint, and continue this process until the IC

constraint is satisfied for some k̃.

The following proposition summarizes the result.

Proposition 4 The optimal SPPE value, v (N, δ), is supported by the following

cut-off strategy: η (k) = 1 for k < k̃, 0 < η
(
k̃
)
< 1, η (k) = 0 for k > k̃. k̃ and

η
(
k̃
)
are found through the procedure described above.

According to Proposition 4, the optimal punishment scheme is characterized by

a public outcome k̃ such that η (k) = 1 for k < k̃, 0 < η
(
k̃
)
< 1, η (k) = 0 for

k > k̃. Substituting the optimal punishment scheme into (12) yields

L − 1 =
q


N − 1
k̃ − 1

qk̃−1(1−q)N−k̃(1−η(k̃))+
N − 1

k̃

qk̃(1−q)N−k̃−1η(k̃)


k̃−1∑
k=0

N
k

qk(1−q)N−k+
N
k̃

qk̃(1−q)N−k̃η(k̃)
. (14)

We next study the group-size effect to check robustness of the baseline model

results. In this setting with cumulative contributions, we measure the group-size

effect by the impact of a group-size change on the optimal cut-off strategy. The

group-size effect is negative if an increase in N makes k̃ larger or (in case k̃ remains

constant) makes η
(
k̃
)
larger. Indeed, in this case, a stricter punishment is needed

to sustain cooperation. The group-size effect is positive if an increase in N makes

k̃ smaller or (in case k̃ remains constant) makes η
(
k̃
)
smaller. Then, cooperation

can be sustained with a more lenient punishment.

Ideally, we would like to characterize the group-size effect for the whole range of

parameters N , c, q and δ. Although Proposition 4 provides an algorithm for finding

the upper bound of V ∗ (N, δ), we have no explicit expressions for k̃ and η
(
k̃
)
in

terms of N and other parameters. This considerably complicates our task. In what

follows, we restrict our attention to the set of equilibria with k̃ = 0 and analyze the
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impact of a group-size change on the IC constraint and η (0). Substituting k̃ = 0

into (14) yields

L − 1 = q (1− q)N−1 η (0)
(1− q)N η (0)

=
q

1− q .

Then substituting L − 1 into the value function (13) yields

v =
1

1− δ (q (N − 1)− (c− 1)) .

Finally, substituting L − 1 and v into the binding IC constraint and rearranging
yields

η (0) =
(1− δ) (c− 1)

δ (q (N − 1)− (c− 1)) (1− q)N−1
.

The next step is to verify that k̃ = 0 indeed characterizes the optimal punishment

scheme. This is the case if η (0) ∈ (0, 1), which amounts to

c− 1 < q (N − 1)
1−δ

δ(1−q)N−1 + 1
,

i.e., c being small enough.

Without loss of generality, we consider an increase in the group size from N1 to

N1 + 1. The group-size effect is positive if (i)k̃ = 0 remains to be the solution after

the group size becomes N1+1; (ii)η(0) decreases after the group size becomes N1+1.

Intuitively, if the increase of group size reduces members’incentive to deviate and

thus favors cooperation, the new optimal punishment scheme should become less

strict, compared to the original one. Proposition 5 shows that the insight from the

benchmark model continues to hold in this more general environment if q is not too

small.

Proposition 5 Suppose the initial group size is N1 and the cooperation sustains
with k̃ = 0. If the group size increase to N1 + 1, the group size effect is positive

when N1 is relatively small and negative when N1 is relatively large if and only if
1
2
< q < c

2
.

6 Conclusion

There is an extensive theoretical literature focused on how an increase of group

size affects group members’ incentive to contribute to the public goods. Despite
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this extensive literature, however, only a few paper considers what new implica-

tions we can draw about group-size effect if the dynamic aspect is brought into the

picture. This article investigates this issue by building a model that combines the

repeated interaction of group members and their temporary constraints of making

contribution. In our paper, an increase of the group size simultaneously increases

the temptation to free ride and the future value of maintaining cooperation. In a

small group the large scale effect dominates while in a large group the free-riding

effect dominates. As the consequence, the group-size effect is positive in the small

group but negative in the large group.

We believe that our result provides a novel angle to interpret peoples’incentive to

make public goods contribution and thus how the change of group size affects their

behavior. The model and the underlying mechanism is fairly simple, which makes

possible a number of extensions to be done. First, in our analysis, the probability of

being able and the cost of making contributions are assumed to be identical across

members. It is easy to introduce heterogeneity to those parameter, and by doing

so, one can explore an optimal member formation of a group (team). We have

done some preliminary analysis by introducing heterogenous probabilities of being

able. We find that an optimal team formation often requires a mixture of high type

members and low type members as the high type members have higher incentive to

deviate. A second possible extension is to have a more detailed production process.

For example, in the general case with substitutive contribution, the production

can be interpreted as an information aggregating process such as in voting models.

An explicit information aggregation process will allow us to analyze problems such

as the optimal size of deliberating committees and may yield new insight on how

effi ciently information is aggregated (for a related work, see Koriyama and Szentes,

2009). Finally, in this article, we assume that each member has a positive probability

of being unable, which implies that the probability that no one is able is positive.

It may be arguable that in a fairly large community, the probability that no one is

unable is approximately zero. Then it would be worthwhile to extend our framework

to an environment in which the number of able members is always positive but the

identity of able member is random.
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Appendix

Proof of Proposition 1
Note that the right-hand side of (5) is a continuous function, strictly decreasing

in both δ and T . If T =∞ then the right-hand side of (5) becomes 1−δ
δ
, which strictly

decreases from ∞ to 0 when δ increases from 0 to 1. Then, from the Intermediate

Value Theorem, there exists a δ ∈ (0, 1) such that

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w) − 1
)
=
1− δ
δ

.

For any δ > δ, we have
1− δ
δ

<
1− δ
δ

.

Since the right-hand side of (5) is continuous in T , there always exists a T < ∞
such that

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w) − 1
)
≥ 1− δ
δ
(
1− δT

) .
The proposition then follows. Q.E.D.

Proof of Lemma 1
Differentiating (3) with respect to α and simplifying yields

sign
(
dV +

dα

)
= −sign

(
qδ
(
1− δT

)
(−c− u− w + v) +

(
1− δT+1

)
u
)
.

Consider the argument of the sign function, qδ
(
1− δT

)
(−c− u− w + v)+

(
1− δT+1

)
u,

as a function of T . It is easy to check that its first-order derivative is proportional

to δT+1 ln δ, which implies that the argument itself is monotonic in T . When T = 0,

it equals to (1− δ)u ≥ 0. When T =∞, it equals to qδ(−c− u−w+ v) + u which
is strictly positive because

qδ(−c− u− w + v) + u = qδ (v − w − c) + (1− qδ)u
≥ qδ (v − w − c) + (1− α) (1− qδ)u > 0.

The last inequality follows from Assumption 1. Therefore, the argument of the sign
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function is always positive for T ∈ [0,∞] and

dV +

dα
< 0.

Since α is a decreasing function of N then

dV +

dN
> 0.

Q.E.D.

Proof of Proposition 2
We use the first-order condition with respect to α to find critical points of the

left-hand side of (5). There are two critical points:

α1 =
1

v − w

[
c−

√
c (1− q) (c− v + w) (u− v + w) ((1− q)u+ q (v − w))

(1− q) (u− v + w)

]

and

α2 =
1

v − w

[
c+

√
c (1− q) (c− v + w) (u− v + w) ((1− q)u+ q (v − w))

(1− q) (u− v + w)

]
.

α2 is strictly larger than 1 and is therefore ruled out since α ∈ [0, 1]. α1 is always
smaller than 1. The second-order condition with respect to α is

−2c (c− v + w) [(1− q)u+ q (v − w)]
(c− α (v − w))3

< 0.

Therefore, the left-hand side of (5) is a strictly concave function of α ∈ [0, 1]. α1
is smaller than or equal to 0 if and only if q (v − w) + (1− q)u ≤ c. In this case,

the left-hand side of (5) is nonpositive for α ∈ [0, 1] and therefore cooperation

can not be sustained for any group size N . α1 is larger than 0 if and only if

q (v − w) + (1− q)u > c. Then the left-hand side of (5) has a single peak at (0, 1)

and is therefore first increasing and then decreasing in α. Since α is a strictly

decreasing function of N then the left-hand side of (5) is also first increasing and

then decreasing in N .

However, strictly speaking, α cannot exceed 1 − q since at least two members
are required to form a group. Thus, in order to prove that the left-hand side of (5)
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has an inverted-U shape one has to show that α1 ∈ (0, 1− q). Then condition

2c > v − w − (1− q) (1− 2q) (u− v + w)+√
((1− q)u+ q (v − w)) (u− (u− v + w) (5q − 8q2 + 4q3))

ensures that α1 < 1−q. However, if the above condition does not hold then α1 ≥ 1−q
and thus the left-hand side of (5) is an increasing function of α ∈ (0, 1− q) and a
decreasing function of N ≥ 2. Q.E.D.

Proof of Proposition 3
Substituting v = w, α and β into the non-deviation condition (10) yields

(1− q)N−1 Nu(1−q)(1−(1−q)
N−1)−c(1−(1−q)N+N(1−q))

cN
≥ 1− δ
δ(1− δT )

. (15)

Consider the left-hand side of (15). Its first-order derivative is given by

(1−q)N−1(c(1−(1−q)N+N ln(1−q)[−N(1−q)+2(1−q)N−1])+uN2 ln(1−q)[1−q−2(1−q)N ])
cN2 . (16)

It is easy to check that the sign of (16) is equal to the sign of

c

u
+ f̂ (N, q) ,

where

f̂ (N, q) ≡ N2 ln(1−q)[1−q−2(1−q)N ]
1−(1−q)N+N ln(1−q)[−N(1−q)+2(1−q)N−1]

.

We next compare c
u
with −f̂ (N, q) to determine the sign of (16). For any q ∈ (0, 1),

−f̂ (N, q) is an increasing function of N ≥ 2. It takes its minimum of f̂ (q) ≡
f̂ (2, q) = 4(1−q)(1−2q) ln(1−q)

(2−q)q−2(1+2q(1−q)) ln(1−q) when N = 2 and approaches 1 from below when

N goes to infinity. Consider the following three cases.

1. c
u
≥ 1.

In this case, c
u
+ f̂ (N, q) > 0 and so the sign of (16) is strictly positive

for all N ≥ 2. So, the left-hand side of (15) is an increasing function of

N ≥ 2 bounded between −1
2
(1− q)

(
2− q2 − 2 (1− q) q u

c

)
< 0 and 0, and so

nonpositive for all N ≥ 2. Thus, cooperation can not be sustained for any

group size.
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2. max
[
f̂ (q) , 0

]
< c

u
< 1, which amounts to q ≤ 1

2
and c < u, or q > 1

2
and

f̂ (q)u < c < u.

In this case, there exists a unique N > 2 such that c
u
+ f̂

(
N, q

)
= 0 and

c
u
+ f̂ (N, q) ≷ 0 for N ≶ N . Thus, the left-hand side of (15) has a single peak

at N > 2 and approaches zero from above when N goes to infinity. It has

therefore an inverted-U shape at N ≥ 2.

3. 0 < c
u
≤ max

[
f̂ (q) , 0

]
, which amounts to q > 1

2
and c ≤ f̂ (q)u.

In this case, c
u
+ f̂ (N, q) < 0 and so the sign of (16) is strictly negative for all

N ≥ 2. The left-hand side of (15) is a decreasing function of N ≥ 2 bounded
between −1

2
(1− q)

(
2− q2 − 2 (1− q) q u

c

)
> 0 and 0, and so positive for all

N ≥ 2.

To sum up, the left-hand side of (15) has an inverted-U shape at N ≥ 2 either
when q ≤ 1

2
and c < u or when q > 1

2
and f̂ (q)u < c < u. It decreases in N ≥ 2

when q > 1
2
and c ≤ f̂ (q)u. Q.E.D.

Proof of Proposition 4
Some η(k) have to be positive for the IC constraint to hold. Otherwise, vu will

be strictly higher than va and therefore the IC constraint will be violated. Since

some η(k) are positive, L is well defined.
To find the highest L, we need to find a public outcome k which is most likely

to occur off the equilibrium path relative to its likelihood on the equilibrium path.

For each public outcome, the power of test, L (k), is defined as the likelihood ratio
of triggering punishment after public outcome k has been observed. Denote by

θd (k) the probability of triggering punishment after observing k off the equilibrium

path and by θc (k) the probability of triggering punishment after observing k on the

equilibrium path. Then

L (k) = θd (k)

θc (k)
=

q·

N − 1
k

qk(1−q)N−1−k+(1−q)·
N − 1

k

qk(1−q)N−1−k

q·

N − 1
k − 1

qk−1(1−q)N−k+(1−q)·
N − 1

k

qk(1−q)N−1−k
= N−k

N
1
1−q .
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It is easy to check that {L (k)}Nk=0 is a sequence strictly decreasing in k. Note that

L =

N∑
k=0

θd (k) η (k)

N∑
k=0

θc (k) η (k)

.

Moreover,

k−1∑
j=0

θd (j) + θd (k) η (k)

k−1∑
j=0

θc (j) + θc (k) η (k)

>

k∑
j=0

θd (j) + θd (k + 1) η (k + 1)

k∑
j=0

θc (j) + θc (k + 1) η (k + 1)

(17)

for k = 0, ..., N − 1. To see this formally, compare the left-hand side of the above
inequality with the right-hand side. This is equivalent to comparing

(1− η (k))
k−1∑
j=0

(
θc (k) θd (j)− θd (k) θc (j)

)
+

η (k + 1)
k−1∑
j=0

(
θc (k + 1) θd (j)− θd (k + 1) θc (j)

)
+ (18)

η (k) η (k + 1)
[
θd (k) θc (k + 1)− θc (k) θd (k + 1)

]
with zero. The first term equals zero for k = 0 and is strictly positive for k =

1, ..., N − 1 since θd(j)
θc(j)

> θd(k)
θc(k)

with j = 0, ..., k − 1. The second term is equal to

zero for k = 0 and is strictly positive for k = 1, ..., N − 1 since θd(j)
θc(j)

> θd(k+1)
θc(k+1)

with

j = 0, ..., k − 1. Finally, the last term is always positive since θd(k)
θc(k)

> θd(k+1)
θc(k+1)

. It

follows that (18) is strictly positive and therefore (17) holds. (17) implies that

θd(0)
θc(0)

> θd(0)+θd(1)η(1)
θc(0)+θc(1)η(1)

> θd(0)+θd(1)+θd(2)η(2)
θc(0)+θc(1)+θc(2)η(2)

> ... > θd(0)+θd(1)+...+θd(N)η(N)
θc(0)+θc(1)+...+θc(N)η(N)

. (19)

Thus, L reaches its maximum value of θ
d(0)
θc(0)

when η (0) > 0 and η (1) = ... = η (N) =

0. The next step is to check the IC constraint for this punishment scheme. If the

IC constraint is satisfied then this is the optimal punishment scheme and η (0) is

characterized by the binding IC constraint. If the IC constraint does not hold then

one has to consider the second largest value of L from ranking (19), θ
d(0)+θd(1)η(1)
θc(0)+θc(1)η(1)

,

which is reached when η (0) = 1, η (1) > 0 and η (2) = ... = η (N) = 0. If the IC

constraint is satisfied for η (0) = 1, η (1) > 0 and η (2) = ... = η (N) = 0, then
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this is the optimal punishment scheme and η (1) is characterized by the binding IC

constraint. Otherwise, one has to consider the third largest value of L from ranking
(19), check the IC constraint for the punishment scheme corresponding to this value

of L, and continue this process until the IC constraint is satisfied. Q.E.D.

Proof of Proposition 5
Denote R (N, q) ≡ q(N−1)

1−δ
δ(1−q)N−1

+1
. Suppose that k̃ = 0 characterizes the optimal

punishment scheme for some N1 ≥ 2. Then c− 1 < R (N1, q). Consider an increase

in the group size from N1 to N1 + 1. k̃ = 0 will still characterize the optimal

punishment scheme for N1 + 1 if R (N1, q) < R (N1 + 1, q), which amounts to

(1− q)N1
N1q − 1

>
1− δ
δ

.

Assume that the above ineqality holds for some N1 and consider the impact of a

group-size increase from N1 to N1 + 1 on η (0). It is easy to show that ηN1 (0) R
ηN1+1 (0) if and only if N1 Q c

q
.

When k̃ = 0, IC condition holds if and only if c − 1 < R(N, q). Suppose that

c − 1 < R(N1, q) holds for some N1. Consider whether the IC constraint is still

satisfied when the group size increases from N1 to N1 + 1. The group-size effect is

positive if R(N1 + 1, q) > R(N1, q) and negative if R(N1 + 1, q) < R(N1, q). Let

k̃ still be set at 0. Use R(N, q), we can obtain R(N1 + 1, q) =
qN

1−δ
δ(1−q)N

+1
. Simple

algebra shows the following:

R(N1, q)≶R(N1 + 1, q) ⇔
(1− q)N1
N1q − 1

≷ 1− δ
δ

.

Note that (1−q)N1
N1q−1 is a strictly decreasing function of N1. Moreover, when N → ∞,

(1−q)N1
N1q−1 tends to zero and the k̃ = 0 cannot be the solution for group size N1 + 1.

This implies that, for k̃ = 0 to be the solution for group size N1 + 1, it is necessary

and suffi cient to have (1−q)2
2q−1 > 1−δ

δ
, or equivalently, 1

2
< q <

√
1−δ
δ
+ 1

δ
. However,

since
√

1−δ
δ
+ 1

δ
> 1, the requirement reduces to 1

2
< q. Then, if 1

2
< q, R(N1, q) <

R(N1 + 1, q) when N1 is relatively small and R(N1, q) > R(N1 + 1, q) when N1 is

relatively big.

Now suppose that both R(N1, q) and R(N1 + 1, q) are strictly larger than c− 1
so that k̃ = 0 is the solution for both group size N1 and N1+1. We want to see how

η(0) corresponds to the increase of N . Equation (??) gives the expression of η(0)
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as a function of N . Define R0(N, q) =
(1−δ)(c−1)

δ[q(N−1)−(c−1)](1−q)N−1 . The group-size effect

is positive if R0(N1 + 1, q) < R0(N1, q) and negative if R0(N1 + 1, q) > R0(N1, q).

Simple algebra delivers the following:

R0(N1, q)≶R0(N1 + 1, q) ⇔ N1 ≷
c

q
.

For every large N1, R0(N1, q) < R0(N1 + 1, q). To have R0(N1, q) > R0(N1 + 1, q)

for some N1, it is necessary and suffi cient to require 2 < c
q
. If this condition holds,

R0(N1, q) > R0(N1 + 1, q) when the group size is relatively small and R0(N1, q) <

R0(N1 + 1, q) when the group size is relatively large.

As a direct result of the analysis above, the group-size effect is positive when N1
is relatively small and negative when N1 is relatively large if and only if 12 < q < c

2
.

Q.E.D.
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