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1. Introduction

Backwards induction has been implemented in the literature through sev-

eral equilibrium concepts for extensive-form games. Extensive-form perfect

equilibrium (Selten, 1975), sequential equilibrium (Kreps and Wilson, 1982)

and quasi-perfect equilibrium (van Damme, 1984) are (together with subgame

perfection) the most prominent examples. Sequential equilibrium is the less

demanding of these three concepts. Every extensive-form perfect as well as

every quasi-perfect equilibrium is sequential. In turn, Blume and Zame (1994)

show that for generic extensive-form games every sequential equilibrium is

also extensive-form perfect (henceforth simply perfect).

Nevertheless, there is no inclusion relationship between quasi-perfect and

perfect equilibrium. Indeed, Mertens (1995) gives an example of a game where

quasi-perfect and perfect equilibrium select disjoint sets of strategy profiles.

As Mertens argues, since quasi-perfect equilibria are normal form perfect—

which can be understood as a strong version of admissibility—it seems that

quasi-perfect equilibrium is superior to the perfect equilibrium concept. In

fact, more recently Govindan and Wilson (2006, 2012) use quasi-perfect equi-

librium as one of their building blocks to axiomatize and characterize strategic

stability.
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Figure 1. .R; `;B/ is perfect but not quasi-perfect.

A standard example that is used to show that perfect equilibrium may se-

lect unreasonable equilibria is depicted in Figure 1 (this is Example 4 in van

Damme, 1984). The strategy profile .R; `; B/ is a sequential and a perfect equi-

librium. But it is not an admissible strategy profile and consequently not a

quasi-perfect equilibrium. The current paper shows that this example is ex-

ceptional in the space of games with that extensive form. More precisely, we

prove that for generic extensive form games the sets of sequential and quasi-

perfect equilibria coincide. This, together with the aforementioned result by

Blume and Zame, implies that for generic extensive form games the sets of

perfect, sequential and quasi-perfect equilibria are the same.

We follow Blume and Zame (1994) very closely. In Section 2 we introduce

notation and terminology for extensive form games. Section 3 defines quasi-

perfect equilibria as limit points of sequences of "-quasi-perfect equilibria. In-

stead of providing the usual definition of sequential equilibrium as sequen-

tially rational consistent assessments, we give a characterization of sequen-

tial equilibrium strategies based on "-quasi-perfect equilibria of nearby games.

This allows a simple comparison between quasi-perfect and sequential equi-

librium that leads to proving the generic equivalence result in Section 4.

2. Preliminaries

In this section we introduce notation and definitions for finite extensive games

with perfect recall.

An extensive-form is a tuple � D .N ; T;�; P;H;C; �/. The set of players is

N D f1; : : : ; N g. Players are indexed by n D 1; : : : ; N and, as usual, the symbol

�n is used to denote N X fng.

The finite set of nodes T partially ordered by � and contains the set of de-

cision nodes X and the set of final nodes Z. The set of decision nodes X is

partitioned by the player partition P D .P0; P1; : : : ; PN /, where Pn represents

the set of nodes where player n has to move (P0 corresponds to the set of

nodes where Nature moves). The information partition H D .H1; : : : ;HN / con-

tains the information structure of the extensive form, where for each n, the

collection Hn partitions Pn into information sets h 2 Hn. The set of choices

in the extensive form is C and C.h/ will denote the set of choices available at
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the information set h. Finally, � specifies the probability distributions over the

moves of Nature.

An extensive-form game � .u/ is obtained from the extensive-form � by

specifying for each player n a Bernullian payoff function unWZ ! R. Therefore,

Un D RZ is the space of player n’s payoffs and U D
Q
n Un D .RZ/N is the

space of games with extensive-form � .

Kuhn’s Theorem (Kuhn, 1953) allows us to focus on behavior strategies.

A behavior strategy sn of player n specifies for each information set h 2 Hn
where she has to move a probability distribution sn.� j h/ over the set of choices

C.h/. The set of behavior strategies for player n is Sn and its (finite) subset of

pure strategies is In � Sn. Furthermore, the set of completely mixed behavior

strategies for player n is Sın . We also write S D
Q
n Sn, S�n D

Q
m¤n Sm, Sı DQ

n S
ı
n and Sı�n D

Q
m¤n S

ı
m for the corresponding sets of strategy profiles.

A strategy profile s 2 S induces (together with �) a probability distribution

on the set of final nodes Z. Let P Œ z j s� be the probability that z 2 Z is reached

if the strategy profile s is played. The expected utility to player n if s D .s�n; sn/

is played and the utility vector is u 2 U is given by

vn.s�n; sn; u/ D
X
z2Z

un.z/ P Œ z j s�n; sn�:

We also need to define the expected utility that player n obtains once each

one of her information sets h 2 Hn is reached. These expected utilities depend

on the conditional probability induced on Z by the strategy profile once the

information set has been reached. However, some information sets may be

reached with probability zero under some strategy profiles. Thus, we can only

define these expected utilities for those strategy profiles for which they are

well defined. To this end, for an information set h 2 Hn of player n, let I.h/

and S.h/ define the sets of pure and mixed strategy profiles that induce a play

of the game that reaches a node in h. Note, in particular, that Sı � S.h/ for

every h. If In.h/, I�n.h/, Sn.h/ and S�n.h/ are the corresponding projections of

I.h/ and S.h/ on Sn and S�n, perfect recall implies that I.h/ D In.h/ � I�n.h/

and S.h/ D Sn.h/�S�n.h/. Moreover, let Z.h/ denote the final nodes that come

after some node in h.

The expected utility to player n at the information set h when the strategy

profile s D .s�n; sn/ 2 S.h/ is played is given by:

vhn.s�n; sn; u/ D
X
z2Z.h/

un.z/
P Œ z j s�n; sn�

P Œ Z.h/ j s�n; sn�
;

where the probability in the denominator is computed in the usual manner.

3. Sequential and quasi-perfect equilibrium

Before we define quasi-perfect and sequential equilibrium we need some ad-

ditional notation. If h 2 Hn and c 2 C.h/, we denote as In.h; c/ the subset of
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strategies in In.h/ that prescribe action c at h. Furthermore, if c 2 C.h/ and

h 2 Hn we use the substitution notation snjhc to denote the strategy of player

n that prescribes the same behavior as sn at every information set but h, where

it assigns probability one to choice c.

We define quasi-perfect equilibrium using "-quasi-perfect equilibria:

Definition 1. A completely mixed strategy profile s" 2 Sı is an "-quasi-perfect

equilibrium of the game � .u/ if for every player n 2 N , every information set

h 2 Hn, and every two choices c, c0 2 C.h/ the following holds

max
in2In.h;c/

vhn.s
"
�n; in; u/ < max

jn2In.h;c0/
vhn.s

"
�n; jn; u/ implies s"n.c j h/ � ":

Definition 2. A strategy profile s 2 S is a quasi-perfect equilibrium of the

game � .u/ if it is the limit point as " goes to zero of "-quasi-perfect equilibria.

Furthermore, we let QE WU � S denote the quasi-perfect equilibrium corre-

spondence.

We move to define sequential equilibrium. A sequential equilibrium is a

strategy profile and a sequence of beliefs. To compare quasi-perfect and se-

quential equilibria we need to focus on sequential equilibrium strategies. Our

starting point is the following useful characterization of sequential equilib-

rium strategies in terms of sequences of strategy profiles and sequences of

payoffs (Kreps and Wilson, 1982, Proposition 6):

Proposition 3 A strategy profile s 2 S is a sequential equilibrium strategy of

the game � .u/ if and only if there is a sequence of completely mixed strategy

profiles fstg1tD1 � Sı and a sequence of payoff functions futg1tD1 � U such

that:1

� fstg1tD1 converges to s, futg1tD1 converges to u; and

� for every index t , every player n, every information set h 2 Hn and every two

choices c, c0 2 C.h/, if sn.c j h/ > 0, then

vhn.s
t
�n; s

t
njhc; u

t / � vhn.s
t
�n; s

t
njhc

0; ut /:

(From now on we use the term sequential equilibrium referring only to the

strategy component.) We are interested in a similar characterization of se-

quential equilibrium that uses the "-quasi-perfect equilibrium conditions. The

following proposition serves this purpose:

Proposition 4 A strategy profile s 2 S is a sequential equilibrium of � .u/ if

and only if there is a sequence f"tg1tD1 � .0; 1�, a sequence of completely mixed

strategy profiles fstg1tD1 � S
ı and a sequence of payoff functions fzutg1tD0 � U

such that:

1 A perfect equilibrium of � .u/ is defined similarly. We only need to restrict the sequence of

payoff functions fut g1tD1 so that ut D u for all t .
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� f"tg1tD1 converges to 0, fstg1tD1 converges to s, fzutg1tD1 converges to u, and

� for every index t , st is an "t -quasi-perfect equilibrium of � .zut /.

Proof. See Appendix A. ut

Henceforth, we let SE WU � S represent the sequential equilibrium corre-

spondence.

Proposition 4 characterizes the sequential equilibria of a game as the set of

limit points of "-quasi-perfect equilibria of nearby games. Intuitively, if a strat-

egy profile s is a sequential equilibrium of � .u/ then Proposition 3 implies that

it can be approximated by a sequence of equilibria of nearby payoff-perturbed

games (Blume and Zame, 1994, Proposition B). Of course, this does not imply

that the equilibria of the perturbed games be also "-quasi-perfect equilibria for

some ". However, player’s payoff vectors can be varied slightly to make it so.

To conclude, one can show that these variations in the payoffs vanish as the

sequence of games approaches the true game.

4. The result

Following Blume and Zame (1994), we exploit the semi-algebraic structure of

most game theoretical constructions. A set is semi-algebraic if it can be defined

by a finite system of polynomial equalities and inequalities. A correspondence

(function) is semi-algebraic if its graph is a semi-algebraic set. The Tarski-

Seidenberg Theorem (Tarski, 1951; Seidenberg, 1954) guarantees that every

first-order formula (a expression involving constants, variables, the universal

and existential quantifiers and the standard algebraic operations) defines a

semi-algebraic set. Blume and Zame (1994) use the Tarski-Seidenberg Theorem

to show that the Nash, perfect and sequential equilibrium correspondences are

semi-algebraic. As they suggest, their argument can be extended to establish

the semi-algebraic nature of many equilibrium refinements. One can easily

apply it here to show that the quasi-perfect equilibrium correspondence is

semi-algebraic. In fact, every set and correspondence that we consider in this

paper is semi-algebraic.2

The basic result on semi-algebraic correspondences that we use is stated

in Lemma 6 below and proved in Blume and Zame (1994). But before that

we need to introduce the usual sequential characterizations of continuity for

correspondences.

Definition 5. Let F WX � Y be a compact-valued correspondence.

� F is upper-hemicontinuous at x if and only if for every sequence fxtg1tD1 �

X converging to x, the limit y of any sequence fytg1tD1 � Y such that yt 2

F.xt / for all t satisfies y 2 F.x/.

2 For a detailed exposition of semi-algebraic theory the reader is referred to Bochnak et al.

(1998).
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� F is lower-hemicontinuous at x if and only if for every sequence fxtg1tD1 � X

converging to x and for every y 2 F.x/ there exist a subsequence fxtk g1
kD1

and a sequence fytk g1
kD1

that converges to y such that ytk 2 F.xtk / for all k.

� F is continuous at x if and only if it is both upper-hemicontinuous and

lower-hemicontinuous at x.

We can now turn to the announced result on semi-algebraic correspon-

dences:

Lemma 6 Let F WX � Y be a compact-valued and semi-algebraic correspon-

dence. Then F is continuous at every point of the complement of a (relatively)

closed, lower-dimensional, semi-algebraic subset of X .

As the perfect, quasi-perfect and sequential equilibrium correspondences

are compact-valued and semi-algebraic, Lemma 6 has important consequences

to study their continuity points.

Fix some N" > 0, the "-quasi-perfect equilibrium correspondence is denoted

by 'WU � .0; N"� � Sı. Let W D Graph.'/ � U � .0; N"� � Sı. The strategy

profile s is a sequential equilibrium of � .u/ if and only if there is a sequence

f.ut ; "t ; st /g1tD1 � W converging to .u; 0; s/. If cl.W / is the closure of W and

cl.W /u D f."; s/ W .u; "; s/ 2 cl.W /g we can say that s is a sequential equilibrium

of � .u/ if and only if .0; s/ 2 cl.W /u. Likewise, the strategy profile s is a quasi-

perfect equilibrium of � .u/ if and only if .u; 0; s/ is the limit point of some

sequence f.u; "t ; st /g1tD1 � W . If we let Wu D f."; s/ W .u; "; s/ 2 W g we can

say that s is a quasi-perfect equilibrium of � .u/ if and only if .0; s/ 2 cl.Wu/.

Additionally, we define the correspondence  WU � Œ0; N"��S by  .u/ D cl.Wu/.

We begin by characterizing the set of games for which quasi-perfect and

sequential equilibria coincide using the upper-hemicontinuity points of  .

Proposition 7 The sets of quasi-perfect and sequential equilibria coincide at

u if and only if  is upper-hemicontinuous at u.

Proof. Let  be upper-hemicontinuous at u and let s be a sequential equilib-

rium of � .u/. There is a sequence f.ut ; "t ; st /g1tD0 � W converging to .u; 0; s/:

Along this sequence ."t ; st / 2  .ut / for every t . Upper-hemicontinuity of  

at u implies that .0; s/ 2  .u/ which in turn implies that s is a quasi-perfect

equilibrium of � .u/.

Suppose now that QE.u/ D SE.u/. The correspondence x WU � Œ0; N"� � S

given by x .u/ D cl.W /u has a closed graph and, therefore, is upper-hemicontinuous

everywhere. Furthermore, the graphs of the correspondences x and  can only

differ at those points where " D 0. That is, QE.u/ D SE.u/ implies x .u/ D  .u/,

from where we can conclude that  is upper-hemicontinuous at u. ut
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The correspondence  is semi-algebraic.3 From Lemma 6 it follows that  

is upper-hemicontinuous at every point of the complement of a closed lower-

dimensional semi-algebraic set. Therefore, Proposition 7 implies the generic

equivalence between sequential and quasi-perfect equilibrium. Moreover, the

analogous result involving perfect and sequential equilibrium has been estab-

lished by Blume and Zame (1994, Theorem 4).4 Hence, we obtain:

Theorem 8 There is a closed, lower-dimensional semi-algebraic subset U0 �

U such that for every u 2 U XU0 the sets of perfect, quasi-perfect and sequen-

tial equilibria coincide.

Since quasi-perfect equilibria are always normal-form perfect we also obtain

that in the complement of a closed, lower-dimensional semi-algebraic subset of

payoffs every extensive-form perfect equilibrium is also normal-form perfect.5

Analogously to Blume and Zame (1994) we also obtain:

Corollary 9 The quasi-perfect and sequential equilibrium correspon-

dences coincide at every point where the first correspondence is upper-

hemicontinuous and the second correspondence lower-hemicontinuous.

Proof. Let SE be lower-hemicontinuous at u and let s 2 SE.u/. Take any se-

quence futg1tD1 converging to u and such that futg1tD1 � U X U0. Lower hemi-

continuity of SE implies that (passing to a subsequence if necessary) we can

find fstg1tD1 converging to s such that st 2 SE.ut / for all t . Since QE.ut / D SE.ut /

also holds for all t we actually have a sequence of quasi-perfect equilibria con-

verging to s. Upper-hemicontinuity of QE implies that s is a quasi-perfect

equilibrium of � .u/. ut

Appendix A. Proof of Proposition 4

The starting point of the proof is Proposition 3. Thus, before proving the re-

sult, we provide a definition of perfect equilibrium based on perturbed games.

A perturbation for the extensive form is a function �WC ! RCC such thatP
c2C.h/ �.c/ < 1 for every information set h. Given a perturbation � the set of

perturbed strategies of player n is

Sn.�/ D fsn 2 Sn W sn.c j h/ � �.c/ for all c 2 C.h/; h 2 Hng:

The perturbed game � .u; �/ is the extensive-form game with payoffs u and

players are constrained to play strategy profiles in S.�/ D
Q
n Sn.�/.

3 Notice that Graph. / DW [f.u; 0; s/ W .u; s/ 2 Graph.QE/g and that both sets in the union

are semi-algebraic.
4 In fact, by letting W denote the graph of the "-perfect equilibrium correspondence we

also provide an alternative proof to the generic equivalence between sequential and perfect

equilibrium.
5Reny (1992) shows that generically, weakly sequential equilibria are normal-form perfect.

Since all sequential equilibria, hence all extensive-form perfect equilibria, are weakly sequential,

it can be seen that generically, extensive-form perfect equilibria are normal-form perfect.
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Definition A.1. A strategy profile s 2 S is a perfect equilibrium if there

is a sequence of perturbations f�tg1tD0 converging to zero and a sequence of

strategy profiles fstg1tD0 converging to s such that st is a Nash equilibrium of

� .u; �t / for every t .

Of course, this definition is equivalent to the one indicated in footnote 1.

Proof of the “only if” part of Proposition 4. Take a sequential equilibrium s

of � .u/. By Proposition 3 we know that there is a sequence f.ut ; �t ; st /g1tD1
converging to .u; 0; s/ such that st is an equilibrium of the perturbed game

� .ut ; �t / for all t . For the time being, fix a member .ut ; �t ; st / of the sequence.

For any h 2 Hn and c 2 C.h/ construct the set:

P tn.h; c/ D
˚
in 2 In.h; c/ W in.c

0
j h0/ D 1 and h < h0 imply stn.c

0
j h0/ > �.c0/

	
:

Furthermore, let Qt
n.h; c/ D In.h; c/ X P

t
n.h; c/.

We define a probability measure on the set of pure continuation strategies.

Let xP Œ in j h; sn� be the probability that the strategy sn assigns to the set of

pure strategies that coincide with in at every information set that follows h

(including h itself). Formally, let Cn.h; in/ D
˚
c 2 C W in.c j h

0/ D 1 and h � h0
	

then xP Œ in j h; sn� D
Q
c2Cn.h;in/

sn.c j h/. In particular, note thatX
in2In.h;c/

xP Œ in j h; snjhc� D 1; for all sn:

Therefore, if the choice d 2 C.h/ is such that stn.d j h/ > �
t .d/ we can write:

vhn.s
t
�n; s

t
njhd; u

t / D
X

in2P
t
n.h;d/

xP Œ in j h; s
t
njhd�v

h
n.s

t
�n; jn; u

t /C

X
jn2Q

t
n.h;d/

xP Œ jn j h; s
t
njhd�v

h
n.s

t
�n; jn; u

t /:

Since st is an equilibrium of � .ut ; �t / the value of the function vhn.s
t
�n; in; u

t / is

the same for every in 2 P tn.h; c/. Take an arbitrary idn 2 P
t
n.h; d/ and rewrite the

previous expression

(A.1) vhn.s
t
�n; s

t
njhd; u

t / D vhn.s
t
�n; i

d
n ; u

t / � l tn.h; d/;

where the last terms equals

l tn.h; d/ D
X

in2Q
t
n.h;d/

xP Œ in j h; s
t
njhd�

�
vhn.s

t
�n; i

d
n ; u

t / � vhn.s
t
�n; in; u

t /
�
:

Consider now a pure strategy jn 2 I.h/ that maximizes vhn.s
t
�n; in; u

t / over

I.h/. Let st;jn
n 2 Sn.�

t / be the perturbed strategy that is located in the ver-

tex of Sn.�t / which is closest to jn. Then, xP Œ in j h; s
t;jn
n � is smaller than "t D

maxc f�t .c/g for every pure strategy in In.h/ that is not jn.

We can write

(A.2) vhn.s
t
�n; s

t;jn
n ; ut / D vhn.s

t
�n; jn; u

t / � Ltn.h/;
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where the last terms equals

Ltn.h/ D
X

in2In.h/Xfjng

xP Œ in j h; s
t;jn
n �

�
vhn.s

t
�n; jn; u

t / � vhn.s
t
�n; in; u

t /
�
:

We have the following inequalities:

vhn.s
t
�n; s

t
njhd; u

t / � vhn.s
t
�n; s

t
n; u

t / � vhn.s
t
�n; s

t;jn
n ; ut /;

where the first inequality follows because in the the perturbed game � .ut ; �t /

choice d is optimal for n’s agent at the information set h and the second in-

equality follows because st is an equilibrium of such a perturbed game.

Combining the last sequence of inequalities with (A.1) and (A.2) we obtain:

vhn.s
t
�n; i

d
n ; u

t /C
�
Ltn.h/ � l

t
n.h; d/

�
� vhn.s

t
�n; jn; u

t /:

To sum up, a strategy of player n that prescribes action d at the information

set h is optimal in the perturbed game � .ut ; �t /. However, the strategy jn

maximizes player n’s utility at h when she does not consider her mistakes in

the future. We are going to use the last inequality to construct a payoff zut such

that st is an "t -quasi-perfect equilibrium of � .zut /. We will later show that the

new sequence fzutg1tD1 converges to u.

Start with an information set h 2 Hn with no preceding information set in

Hn. The set Z.h; idn / � Z.h/ is the set of final nodes that come after h and after

all the choices prescribed by idn . Add Ltn.h/ � l
t
n.h; d/ to the utility that player

n obtains from each z 2 Z.h; idn /.

Consider now an information set h0 2 Hn that follows h immediately. Let d 0,

id
0

n , j 0n, L
t
n.h
0/, and l tn.h

0; d 0/ be constructed as before and add Ltn.h
0/� l tn.h

0; d 0/

to the utility that player n obtains from each z 2 Z.h0; id
0

n /. To guarantee

that player n’s optimality conditions are not affected at h, also add this per-

turbation to player n’s utilities to all final nodes z 2 Z.h; in/. Continue with

this procedure with each subsequent information set and for each player.

Since the game is finite, the procedure ends after a finite number of steps

and we obtain a game � .zut / such that st is an "t -quasi-perfect equilibrium of

� .zut / (with "t D maxc2C f�t .c/g). We can check that the sequence of numbers

fLtn.h/ � l
t
n.h; d/g

1
tD1 converges to zero. This proves the result.

Proof of the “if” part of Proposition 4. Take a sequence f.zut ; "t ; st /g1tD1 converg-

ing to .u; 0; s/ where, for each t , the strategy st is an "t -quasi-perfect equilib-

rium of � .zut /. We have to show that for each t we can find a new payoff vector

ut and a perturbation �t such that st is an equilibrium of the perturbed game

� .ut ; �t / and that, furthermore, futg1tD1 converges to u.

By letting �t .c/ D minfst .c j h/; "tg we construct the vector of perturbations.

The construction of the payoff vector for each t follows analogous lines to the

proof of the only if part of Proposition 4 and, hence, it is omitted. ut
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