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1 Introduction

In many real-world situations, transactions take place through bargaining.
Labour markets in most western economies are characterized by collective
agreements negotiated between unions and firms; non-unionized workers’
salaries are commonly set by individual negotiation, this being most clearly
the case for managerial compensation; firms negotiate over how to split the
profits from a joint venture; buyers and sellers bargain over the price of a
product; the insurer and his client negotiate over the insurance contract in
the insurance market (Kihlstrom and Roth 1982).
It is noticeable that almost all of the bargaining situations mentioned

above involve uncertainty (White 2008). Individuals does not know whether
an accident will happen when they are bargaining over the insurance con-
tract; the firm and the manager have no idea whether the manager’s effort
will end up with a good performance when they are deciding the manager’s
compensation package; producers and retailers are uncertain about the exact
demand when they are setting wholesale prices.
Comparing to the well-analyzed situtation of bargaining with determin-

istic outcome, bargaining with risky outcome is much diffi cult to study, es-
pecially concerning the analysis of comparative statistics. For example, a
frequently cited proposition in the deterministic bargaining literature asserts
that an increase in one’s degree of risk aversion improves the welfare of one’s
opponent. Intuitively, the subjective possibility of strategically reaching dis-
agreement and its costly consequence makes risk aversion disadvantageous
in bargaining (Kannai, 1977; Roth, 1979; Kihlstrom, Roth and Schmeidler,
1981; Sobel, 1981). However, it may fail in the case of risky outcome and
riskless disagreement (Roth and Rothblum, 1982), and in the case of risky
outcome and risky disagreement (Safra, Zhou and Zilcha, 1990).
The complexity of the analysis of the comparative statics properties of

bargaining models with risky outcome and risky disagreement impedes the
application of such models. This paper provides a simple method by focusing
on the Identical Shape Harmonic Absolute Risk Aversion (ISHARA) utility
functions. The ISHARA assumption – equivalent to risk tolerances that are
linear in income with identical slope – implies an aggregation property: the
sum of the certainty equivalents for the two bargainers is independent of the
sharing rule that is used as long as the sharing rule is “effi cient”. Therefore
the model of bargaining over a risky outcome can be reduced to a problem
of bargaining over a certainty equivalent – a riskless outcome.
This transformation allows us to disengage two effects regarding an in-

crease in one’s degree of risk aversion: the bargaining power effect and the
net surplus effect. On the one hand, a more risk-averse bargainer has weak
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bargaining power and hence his opponent benefits. On the other hand, an
increase in one’s degree of risk aversion changes the size of the net certainty
equivalent – the total certainty equivalent of agreement minus the sum of
the certainty equivalents of the two bargainers’disagreements – that the two
bargainers are bargaining over. This will benefit (resp. hurts) his opponent
if the size is increased (resp. reduced). Consequently, the welfare of one’s op-
ponent will be increased as long as an increase in one’s degree of risk aversion
increases the net certainty equivalent. The welfare of one’s opponent will be
reduced if an increase in one’s degree of risk aversion significantly reduces
the net certainty equivalent.
We then apply our model to analyze two situations: bargaining over

insurance contract and bargaining over incentive contract.
That the insurance is determined through bargaining between insurer

and client is justified if neither of them is small. Kihlstrom and Roth (1982)
already studied such a problem with very general utility function. They
show that an insurer always benefits as the client becomes more risk averse.
However, they only analyze the case of risk-neutral insurer, although they
noticed that the assumption of insurer risk neutrality can not be justified
in some interesting situations. They argue that subsequent steps require an
extension of their results to the case of risk averse insurer. This is exactly
the work of this paper. The simple transformation allow us to check easily
that their results are still valid in the case of risk averse insurer.
Another application considers the problem of bargaining over incentive

contract. Standard principal-agent models always assume that the principal
offers a "take-it-or-leave-it" offer. However, as we already argued, it is com-
mon that, in real-life situations, both parties hold some bargaining power.
Economists start to build models of bargaining over incentive contracts and
show that the distribution of bargaining power between principal and agent
has real effects (Pitchford 1998, Balkenborg 2001, Schmitz 2005, Demougin
and Helm 2006, Demougin and Helm 2009, Dittrich and Städter 2011, Yao
2012). However, those literatures only consider the case with a risk-neutral
principal and a wealth-constrained risk neutral agent (or, a risk neutral agent
with limited liability). This paper complements this literature by consider-
ing bargaining between a risk neutral principal and a risk averse agent à la
Holmstrom and Milgrom (1987).
We show that the bargaining model predicts the same incentives and total

surplus as in the model where the principal offers "take-it-or-leave-it" offer.
However, the principal’s preference over the agent’s degree of risk aversion is
quite different. If the principal holds all the bargaining power, he suffers if the
agent becomes more risk averse, as providing incentive becomes more costly
and hence the total surplus is reduced. When the contract is determined
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through bargaining, this result may not hold. This is because an increase
in the agent’s degree of risk aversion has two effects. On the one hand, an
increase in the agent’s degree of risk aversion reduces the total surplus; on
the other hand, it also reduces the agent’s bargaining power. For suffi ciently
riskless production process, the first effect is dominated by the second one,
leading to a higher utility for the principal.
The paper is organized in the following. Section 2 lays out the basic

model. Section 3 provides solution. Section 4 applies the besic model the the
problems of bargaining over insurance and bargaining over incentive contract.
We conclude in section 5.

2 The Nash Bargaining Game

Two bargainers are bargaining over a risky outcome Ỹ . Bargainer i has vNM
utility function ui(w) : [0,∞)→ R, i = 1, 2. The bargaining game is defined
by a pair (S, d), where S = {(Eu1(s(Ỹ )), Eu2(Ỹ − s(Ỹ )))|0 ≤ s(Y ) ≤ Y }
is the set of (unanimously agreed) feasible expected utility payoffs to the
bargainers, d = (Eu(ỹ1), Eu(ỹ2)) ∈ S is the disagreement point, s(Y ) is
the risk sharing rule that maps each realized value of Ỹ to bargainer 1’s
individual share, and ỹi is bargainer i’s disagreement payoff.
We allow Ỹ and ỹis to be degenerated random variables, i.e., riskless

variables. If none of Ỹ and ỹis is degenerated, we are in the case of risky
agreement and risky disagreement; if Ỹ is degenerated, we are in the case of
riskless agreement and risky disagreement; if ỹis are degenerated, we are in
the case of risky agreement and riskless disagreement.
The Nash solution will specify risk-sharing rules ŝ(Y ), which solves the

following problem:

P1 max
s(Y )

(
(Eu1(s(Ỹ ))− Eu1(ỹ1)) · (Eu2(Ỹ − s(Ỹ ))− Eu2(ỹ2))

)
,

and yields the bargaining outcomes F1(S, d) = Eu(ŝ(Ỹ )), F2(S, d) = Eu(Ỹ −
ŝ(Ỹ )) for bargainer 1 and 2 respectively.
Now assume bargainer 2 becomes more risk-averse, i.e., his utility function

becomes v2 (c), with −v
′′
2 (c)

v′2(c)
>
−u′′2 (c)
u′2(c)

. The question that is central to this paper
is: will bargainer 1 be better off?
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3 Solution with ISHARA utility functions

ProblemP1 concerning risk-sharing rules is not easy to solve. We hence focus
on the case of Identical Shape Harmonic Absolute Risk Aversion (ISHARA)
utility functions. Following Schulhofer-Wohl (2006), we give the following
definition of ISHARA:

Definition 1 The two bargainers have ISHARA preferences if their utility
functions are given by ui(c) = (c−θi)1−σ

1−σ , i = 1, 2, where σ ≥ 0 is common to
both bargainers and θi is bargainer i’s individual parameter.

Notice that the constant absolute risk aversion is a special case in the
limit as σ goes to infinity with θ/σ fixed.
Aggregation Property. It is well known that with ISHARA utility

functions, the Pareto frontier in the monetary-equivalent space is a straight
line and the monetary value of the joint pie is distribution-free, i.e., the sum
of the two bargainers’certainty equivalents is constant for any effi cient risk
sharing rule and does not depend on the weights given to the bargainers (see
Schulhofer-Wohl 2006 for a proof). We call this property the aggregation
property. Thus the Nash solution to bargaining with risky outcomes and
risky disagreement points can be viewed as the division of a fixed amount of
certainty equivalent between two risk-averse bargainers.
Denote C as the total certainty equivalent bargained over by two bar-

gainers, C1, C2 as their respective share, and Cd
1 , u−11 (Eu1(ỹ1)), C

d
2 ,

u−12 (Eu2(ỹ2)) as their disagreement payoffs in monetary terms. The net sur-
plus in terms of certainty equivalent isNC = C−

(
Cd
1 + Cd

2

)
> 0. Henceforth,

whenever we say “the size of the pie”, we refer to the net surplus NC.
Since the Nash solution is Pareto optimal and satisfies the axiom of inde-

pendence of irrelevant alternatives, we can restrict our attention to the Pareto
frontier which, under this transformation, is given by Sp = {(u1(C1), u2(C2)) |C1 ≥
0, C2 ≥ 0, C1 + C2 = C}1. Because each bargainer should obtain at least his
disagreement utility, we can further restrict our attention to S̃p = {(u1(C1), u2(C2)) |C1 ≥
Cd
1 , C2 ≥ Cd

2 , C1 + C2 = C}, which, using the expression of NC, can be
rewritten as S̃p = {

(
u1(C

d
1 + x), u2(C

d
2 +NC − x)

)
|0 ≤ x ≤ NC}. It can

be easily proved that there exists a unique Nash solution on S̃P , and the so-
lution (in the certainty-equivalent space) can be obtained from the following

1Independence of irrelevant alternatives means that the solution to the bargaining
problem does not change if the utility possibilities set is unfavorably altered such that
the disagreement point is unchanged and the original solution remains feasible. That is,
if (S, d) and (S′, d) are bargaining problems and S′ ⊂ S, and the solution of (S, d) also
belongs to S′, then the two bargaining problems have the same solution.
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maximization problem:

P2 max
0≤x≤NC

((
u1
(
Cd
1 + x

)
− u1

(
Cd
1

))
·
(
u2
(
Cd
2 +NC − x

)
− u2

(
Cd
2

)))
.

Thus, we have transformed the bargaining model with risky agreement
and risky disagreement into a bargaining model with riskless agreement and
riskless disagreement. Denote w1 (c) = u1

(
Cd
1 + c

)
and w2 (c) = u2

(
Cd
2 + c

)
.

The above bargaining problem can be viewed as two bargainers, whose utility
functions are w1 (c) and w2 (c), and who are bargaining over a riskless pie
NC, with disagreement payoffs zero.

P2′ max
0≤x≤NC

((w1 (x)− w1 (0)) · (w2 (NC − x)− w2 (0))) .

Denote the solution as x#. The F.O.C. with respect to x gives:

w′1
(
x#
)

[w2
(
NC − x#

)
−w2 (0)]−w′2

(
NC − x#

)
[w1
(
x#
)
−w1 (0)] = 0, (1)

which, after rearranging, yields:

w1
(
x#
)
− w1 (0)

w′1 (x#)
=
w2
(
NC − x#

)
− w2 (0)

w′2 (NC − x#)
, (2)

i.e., the ratio of each bargainer’s net share of the pie in terms of expected
utility to marginal utility should be equal.
Now consider the effect of replacing bargainer 2’s preference with a more

risk-averse utility function v2. The increase in risk aversion has two effects.
First, it reduces the sum of the certainty equivalent. Denote the reduced
amount as ∆C = C − C∗, where we use the superscript ∗ to denote the
corresponding variables in the new bargaining game between bargainer u1 and
bargainer v2. Second, it also reduces the disagreement certainty equivalent
of bargainer 2. Denote the reduced amount as ∆Cd

2 = Cd
2 − Cd∗

2 . The
reduced amount of the size of the pie (the net surplus) is hence ∆NC =
NC − NC∗ = ∆C − ∆Cd

2 . When ∆NC > 0, the size of the pie decreases
after the replacement; when ∆NC < 0, the size of the pie increases after the
replacement. The solution x∗ solves the following problem:

P3 max
0≤x≤NC∗

((w1 (x)− w1 (0)) · (w∗2 (NC∗ − x)− w∗2 (0))) ,

where NC∗ = C∗ − Cd
1 − Cd∗

2 is the net surplus in the bargaining game
between bargainer u1 and bargainer v2, and w∗2 (c) = v2

(
Cd∗
2 + c

)
. The

bargaining game can be viewed as two bargainers, whose utility functions
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are w1 (c) and w∗2 (c), and who are bargaining over a riskless pie NC∗, with
disagreement payoffs zero. Similarly, as in solving P2′, the F.O.C. yields

w1 (x∗)− w1 (0)

w′1 (x∗)
=
w∗2 (NC∗ − x∗)− w∗2 (0)

w∗′2 (NC∗ − x∗) . (3)

Bargainer 1 prefers to bargain with bargainer v2 rather than with bar-
gainer u2 if x∗ ≥ x#, which is the case iff

w′1 (x∗) [w2 (NC − x∗)− w2 (0)]− w′2 (NC − x∗) [w1 (x∗)− w1 (0)] ≤ 0,

which, after rearranging, yields

w2 (NC − x∗)− w2 (0)

w′2 (NC − x∗) ≤ w1 (x∗)− w1 (0)

w′1 (x∗)
.

Substitute equation (3) into the above inequality, and we get the necessary
and suffi cient condition of x∗ ≥ x#:

w2 (NC − x∗)− w2 (0)

w′2 (NC − x∗) ≤ w∗2 (NC∗ − x∗)− w∗2 (0)

w∗′2 (NC∗ − x∗) , (4)

which can be rewritten as:

[
w2 (NC − x∗)− w2 (0)

w′2 (NC − x∗) − w∗2 (NC − x∗)− w∗2 (0)

w∗′2 (NC − x∗) ]

+[
w∗2 (NC − x∗)− w∗2 (0)

w∗′2 (NC − x∗) − w∗2 (NC∗ − x∗)− w∗2 (0)

w∗′2 (NC∗ − x∗) ] ≤ 0. (5)

An increase in one’s degree of risk aversion has two effects on one’s oppo-
nent’s welfare. First, because one becomes more risk-averse, one’s bargaining
power will change. The term in the first square bracket reflects this bargain-
ing power effect, because it keeps the net certainty equivalent unchanged.
Second, the net surplus also changes as one becomes more risk-averse. This
net surplus effect is reflected by the terms in the second square bracket.

Lemma 1 w2(NC−x∗)−w2(0)
w′2(NC−x∗)

− w∗2(NC−x∗)−w∗2(0)
w∗′2 (NC−x∗)

≤ 0.

Proof. Denote δ = NC − x∗. The inequality is equivalent to∫ δ

0

w′2 (c)

w′2 (δ)
dc ≤

∫ δ

0

w∗′2 (c)

w∗′2 (δ)
dc
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⇐ w′2 (c)

w′2 (δ)
≤ w∗′2 (c)

w∗′2 (δ)
,∀c < δ

⇔ w′2 (c)

w∗′2 (c)
≤ w′2 (δ)

w∗′2 (δ)
,∀c < δ,

which holds if w′2(c)
w∗′2 (c)

is increasing in c.

∂

∂c

w′2 (c)

w∗′2 (c)
=
w′′2 (c)w∗′2 (c)− w′2 (c)w∗′′2 (c)

w∗′2 (c)2
> 0,

⇔ −w
′′
2 (c)

w′2 (c)
< −w

∗′′
2 (c)

w∗′2 (c)
.

Because bargainer v2 is more risk-averse than bargainer u2, we have −w′′2 (c)
w′2(c)

=

−u′′2(Cd2+c)
u′2(Cd2+c)

< −v′′2 (Cd2+c)
v′2(Cd2+c)

. Moreover, our assumption that σ ≥ 0 implies v2

exhibits Decreasing Absolute Risk Aversion property, and hence −v′′2 (Cd2+c)
v′2(Cd2+c)

<

−v′′2 (Cd∗2 +c)
v′2(Cd∗2 +c)

= −w∗′′2 (c)

w∗′2 (c)
due to Cd∗

2 < Cd
2 .

Notice that equation (4) is equivalent to Lemma 1, given thatNC = NC∗.
The above lemma states that an increase in bargainer 2’s degree of risk
aversion, if it doesn’t affect the net bargaining surplus, i.e., ∆C = ∆Cd

2 ,
will make bargainer 1 better off. This result is consistent with the prevailing
predictions on the Nash solution with risk-averse bargainers: risk aversion
benefits one’s opponent (Kihlstrom, Roth, and Schmeidler, 1981; Roth, 1979,
among others). Disagreement has costly consequences, and the desire to
avoid the risk of disagreement is reflected in the final bargaining outcome. A
more risk-averse bargainer has a stronger desire to avoid such risk, and hence
is willing to give up more share during the bargaining in order to facilitate
reaching an agreement.

Lemma 2 w∗2(NC−x∗)−w∗2(0)
w∗′2 (NC−x∗)

is increasing in NC.
Proof. The result is straightforward by noticing that w∗2 (NC − x∗) −

w∗2 (0) is increasing in NC and that w∗′2 (NC − x∗) is decreasing in NC.

Thus, the term in the second square bracket of (5), reflecting the net sur-
plus effect, is negative if NC∗ > NC. It states an intuitive result: bargainer
1 will be better off as the size of the pie increases.
Combining lemma 1 and lemma 2 yields the following proposition:
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Proposition 1 An increase in one’s degree of risk aversion benefits one’s
opponent if the net certainty equivalent increases. It hurts one’s opponent
only if the net certainty equivalent decreases significantly, i.e., when it out-
weighs the opponent’s benefit from the increase of relative bargaining power.

As bargainer 2 becomes more risk-averse, the total certainty equivalent
will decrease significantly when the agreement income Ỹ is highly risky. Bar-
gainer 2’s total certainty equivalent will decrease significantly when his/her
disagreement ỹ2 is highly risky. The net certainty equivalent is more likely
to increase when Ỹ is not risky and ỹ2 is highly risky; while it will decrease
when Ỹ is highly risky and ỹ2 is not risky. In the case of riskless agreement
and risky disagreement, the total certainty equivalent does not change, while
bargainer 2’s certainty equivalent of disagreement decreases as he/she be-
comes more risk-averse. Thus the net surplus increases and hence benefits
bargainer 1. In the case of risky agreement and riskless disagreement, the
net certainty equivalent decreases and bargainer 1 may become worse off if Ỹ
is very risky. In the case of risky agreement and risky disagreement, whether
the net certainty equivalent increases or decreases depends on the relative
riskiness of Ỹ and ỹ2.
Finally, the change in the size of the pie also depends on the relative

degree of risk aversion of the two bargainers. If bargainer 1 is much less risk-
averse than bargainer 2, then bargainer 1 bears most of the risk. Thus, an
increase in bargainer 2’s degree of risk aversion would not change the total
certainty equivalent too much. In the extreme case where bargainer 1 is risk
neutral, the total certainty equivalent remains unchanged. The size of the
pie therefore increases as bargainer 2’s certainty equivalent of disagreement
decreases. Similar arguments tell us that the size of the pie will be reduced
if bargainer 2 is much less risk-averse than bargainer 1. We summarize our
results in the following proposition:

Proposition 2 1) With riskless agreement, an increase in a bargainer’s de-
gree of risk aversion always increases his/her opponent’s welfare.
2) With risky agreement, an increase in a bargainer’s degree of risk aver-

sion may increase or reduce his/her opponent’s welfare. An increase in a
bargainer’s degree of risk aversion is more likely to reduce (resp. increase)
his/her opponent’s welfare if the agreement is highly (resp. less) risky, the
bargainer’s disagreement is less (resp. highly) risky, and the bargainer is
much less (resp. more) risk-averse than his opponent.

We illustrate the above proposition with the following example.
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Example 1 Consider the case where two bargainers have CARA utility func-
tion ui (c) = 1−exp(−ric)

ri
, i = 1, 2. Assume, Ỹ ∼ N (µ, σ2), ỹi ∼ N (µi, σ

2
i ).

The specific assumption allow us to write C = µ− R
2
σ2, Cd

1 = µ1 − r1
2
σ21 and

Cd
2 = µ2− r2

2
σ22. The net certainty equivlant is given by NC = C −Cd

1 −Cd
2 .

An increases in r2 will benefit (resp. hurts) bargainer 1 if f (r2, NC) =
u2(Cd2+NC−x)−u2(Cd2 )

u′2(Cd2+NC−x)
is increasing (resp. decreasing) in r2. Denote δ = NC −

x.

d

dr2
f (r2, NC) =

∂

∂r2
f (r2, NC) +

∂

∂NC
f (r2, NC)

∂NC

∂r2

=
1

r2

(
1 + r2δe

r2δ − er2δ
)

+ er2δ
[

1

2

(
σ22 −

∂R

∂r2
σ2
)]

=
1

r2

(
1 + r2δe

r2δ − er2δ
)

+ er2δ
[

1

2

(
σ22 −

r21
(r1 + r2)

2σ
2

)]
.

It is easy to prove that 1+r2δe
r2δ−er2δ > 0. Therefore, we have d

dr2
f (r2, NC) >

0 when σ22 −
r21

(r1+r2)
2σ2 > 0, which is more likely to be the case if σ2 is large,

σ2 is small and that r2 is much larger than r1.
That d

dr2
f (r2, NC) < 0 occurs only if σ22 −

r21
(r1+r2)

2σ2 < 0. Consider

the case with riskless disagreement where σ22 = 0. d
dr2
f (r2, NC) < 0 will

be the case if σ2 > σ̂2, with σ̂2 =
2(1+r2/r1)

2(1+r2δer2δ−er2δ)
r2er2δ

. Notice that σ̂2

is increasing in r2/r1, which means that d
dr2
f (r2, NC) < 0 is easier to be

satisfied if r1 is much larger than r2.

4 Applications

4.1 Bargaining Over Insurance Contract

In this section, we apply our model to study the insurance contracts reached
through bargaining. The model has already studied by Kihlstrom and Roth
(1982). However, they only consider the case with risk-neutral insurer. The
assumption of risk-neutral insurer is appropriate if the insurer insueres many
risks independent of that being analyzed and hence diversify these risks. In
other interesting situations, however, the assumption of insurer risk neutrail-
ity can not be justified (Kihlstrom and Roth 1982). In this section we apply
our basic model and provide a simple method to re-consider this problem
and, specially, to study the situation with risk-averse insurer.
Consider a sitution with two individuals: a client and an insurer. Both
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the insurer and the client are risk averse and have ISHARA utility functions:
ui(c) = (c−θi)1−σ

1−σ , i = I, C, where I, C represent insurer and client.
The client faces a possible financial loss. His wealth is a binary random

variable:

w̃C =

{
wC > 0 with probability v

wC − L > 0 with probability 1− v .

The insurer’s wealth is wI and he is not faced with the possibility of any
exogenous losses. Assume the insurer has suffi cient wealth so that he will
have the resources to provide complete coverage in any cases.
The insurer agrees to insure the client and bear some of the burden of

the client’s loss in the event it arises. His wealth is

xIl = wI − A

if the loss occurs and
xIn = wI + p

if the loss does not occur.
With this insurance contract in force, the client’s wealth is

xCl = wC − L+ A

if the loss occurs and
xCn = wC − p.

if the loss does not occur.
Let’s first consider the case of a risk-neutral insurer and a risk averse

client. In a competitive insurance market, the client is completely insured
and the insurer’s expected wealth is equal to wI . The competitive equilibrium
contract (A, p) is unchanged by an increase in the client’s risk aversion, and
is determined by the following two equations

L− A = p,

(1− v) p− vA = 0.

Now we assume that the insurance contracts are reached through Nash
bargaining. Pareto optimality of the Nash solution requires that the risk-
neutral bear all the risks. That is, the client is completely insured. The total
surplus C is hence given by

C = wC + wL − (1− v)L,

regardless of the degree of the risk aversion of the client.
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The client’s disagreement payoffs is Cd
2 , u−1C (EuC(w̃C)) in monetary

terms. As the client becomes more risk averse, Cd
2 decreases. Thus, an

increase in the client’s risk averse increases the net certainty equivalent that
the insurer and the client are bargaining over, because it does not change
the total certainty equivalent but reduces the client’s disagreement certainty
equivalent. It follows from proposition 1 that the insurer is better off, which
is the result of theorem 4.1 in Kihlstrom and Roth (1982).
Moreover, that the insurer is better off means (1− v) p − vA increases.

Because the client is completely insured, we have L − A = p. It follows
immediately that p increases and A decreases: a more risk averse client pays
a higher premium and receives less coverage of his potential loss.
Now we turn to the case where both of them are risk averse. The total

certainty equilent C = w−1(Ew(w̃C + wI)), where w is the representative’s
utility function, with w = (c−θC−θI)1−σ

1−σ . The disagreement payoff of the client

is equal to Cd
2 , u−1C (EuC(w̃C)), where uC = (c−θC)1−σ

1−σ .

Lemma 3 The net certainty equivalent increases as the client becomes more
risk averse.

Proof. We need to prove

∂NC

∂θC
=

∂C

∂θC
− ∂Cd

2

∂θC
≥ 0.

Using the specific formula of uC and w, we know

Cd
2 =

[
E (w̃C − θC)1−σ

] 1
1−σ + θC

and
C =

[
E (w̃C + wI − θI − θC)1−σ

] 1
1−σ + θI + θC .

Notice that the insurer have suffi cient wealth and hence wI−θI > 0. The
above two equations imply that we will be done if we can prove ∂2C

∂θC∂θI
≤ 0.

From above equation, we have

∂C

∂θC
= −

[
E (w̃C + wI − θI − θC)1−σ

] σ
1−σ E (w̃C + wI − θI − θC)−σ + 1,
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and therefore

∂2C

∂θC∂θI
= σ{

[
E (w̃C + wI − θI − θC)1−σ

] 2σ−1
1−σ

(
E (w̃C + wI − θI − θC)−σ

)2
−
[
E (w̃C + wI − θI − θC)1−σ

] σ
1−σ E (w̃C + wI − θI − θC)−σ−1}

= σ
[
E (w̃C + wI − θI − θC)1−σ

] 2σ−11−σ
{
(
E (w̃C + wI − θI − θC)−σ

)2
− E (w̃C + wI − θI − θC)1−σ E (w̃C + wI − θI − θC)−σ−1}
≤ 0,

where the last inequality holds as a direct application of Cauchy-Schwarz
inequality.
Notice that an increase in the client’s degree of risk aversion reduces both

the total surplus and the client’s certainty equivalent of disagreement. In the
case of no disagreement, the certainty equivalent Cd

2 is reduced significantly
because the client alone bear all the risks. In the case of agreement, however,
the total certainty equivalent C is reduced only slightly because the insurer
share some risks. As a result, the reduced amount of C is much less than the
reduced amount of Cd

2 and therefore the net certainty equivalent increases.
The above lemma together with proposition 1 immediately gives the fol-

lowing proposition

Proposition 3 The insurer, whether he is risk-neutral or risk averse, bene-
fits as the client becomes more risk averse.

Calculating the bargained Insurance Contract. Now we illustrate
how we can calculate the bargained contract (A, p) from the transformed
problem. First, from equation (1), we can calculate the exact net certainty
equivalent that the insurer gets (x#) and the client gets (NC−x#). Then, the
contract (A, p) can be calculated from the definition of certainty equivalent,
which are given by the following two equations:

vuC (wC − p) + (1− v)uC (wC − L+ A) = uC
(
Cd
2 +NC − x#

)
,

vuI (wI + p) + (1− v)uI (wI − A) = uI
(
wI + x#

)
.

4.2 Bargaining Over Incentive Contract

Standard principal-agent models often assume that the principal offers "take-
it-or-leave-it" contracts to the agent. Consequently, the principal obtains all
the surplus of the transaction. A direct result is that the principal suffers
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from an increase in the degree of the agent’s risk aversion, because the cost of
providing higher incentive increases as the agent becomes more risk averse.
However, in many real-world situations, both parties hold some bargain-

ing power and hence the contracting involves bargaining. For example, many
labour market situations are characterized by bargaining between workers
and firms (Demougin and Helm 2006). We will prove in this section that
bargaining will change significantly the property of comparative statistics.
Especially, we will show that the principal may benefit if the agent becomes
more risk averse.
Consider the case where a risk neutral principal bargaining with a risk

averse agent over an incentive contract. The principal hires the agent to
produce output. The agent has CARA utility function with absolute risk
averse coeffi cient r: u (x) = 1−exp(−rx)

r
. The agent can exert costly effort to

increase output. The output is

y = e+ ε,

where ε ∼ N (0, σ2), with σ2 representing the riskiness involved in the
production process, while e representing the effort exerted by the agent. The
effort cost is c (e) = e2

2
.

Contract. The effort is not observable. The only observable and con-
tractible variable is the output y. Assume the contract that the two parties
are bargaining over is linear:

w = w0 + αy,

where w0 is the fixed salary and α is the power of incentive.
The timing is follows. First, the two parties engage in Nash bargaining

process and bargain over the contract (w0, α). If no agreement is reached,
the game is over and both of them get nothing. If a contract is signed, then
the agent chooses his effort. Finally, output is realized and the contract is
excuted.
Given the contract, the agent choose e to maximize his certainty equiva-

lent

CA = w0 + αe− rα2σ2

2
− e2

2
.

F.O.C with respect to e gives the following incentive compatible condition

IC : e = α.

For contract (w0, α), the total certainty equivalent of the principal and
the agent is
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C = e− e2

2
− rα2σ2

2
.

Subsitute the IC condition into the expression of C and CA, we obtain

C (α) = α− (1+rσ2)α2
2

as a function of α and CA (α,w0) = w0 +
(1−rσ2)α2

2
as

a function of α and w0. Notice that both the principal and the agent get
nothing if no agreement is reached. Hence, the Nash Bargainig solution is
given by the following problem

max
w0,α

(C (α)− CA (α,w0))u (CA (α,w0)) .

The solution of Nash bargaining implies that two parties will choose α to
maximize the total certainty equivalent C (α). Otherwise, suppose the solu-
tion is (w′0, α

′), while there exists α∗ such that C (α∗) > C (α′). Then one can
choose a proper w∗0 such that CA (α′, w′0) = CA (α∗, w∗0). Obviously, (w∗0, α

∗)
gives a higher value of (C (α)− CA (α,w0))u (CA (α,w0)), contrading that
(w′0, α

′) is the Nash solution.
The first order condition of C ′ (α) = 0 immediately gives

α∗ =
1

1 + rσ2
.

The net certainty equivalent is equal to the total surplus and is given by

NC = C =
1

1 + rσ2
− 1

2

(
1

1 + rσ2

)2
− rσ2

2

(
1

1 + rσ2

)2
=

1

2

1

1 + rσ2
.

Proposition 4 Comparing to the case where the principal has all the bar-
gaining power, the bargaining model predicts the same power of incentive (α)
and hence the same total surplus.

The existing literatures considering bargaining contract between principal
and agent often assume risk neutral agent with limited liability ( Pitchford
1998, Balkenborg 2001, Demougin and Helm 2006). The main result is that
the bargaining model and the take-it-or-leave-it model prodict different in-
centives. The above proposition is in contrast with this result and provides
an example where bargaining does not have real effect. However, as we will
show immediately, the principal’s preference over the agent’s degree of risk
aversion is quite different from the take-it-or-leave-it model.
The above analysis show that the bargaining model can be viewed as if

the principal and the agent are bargaining over a total surplus C = 1
2

1
1+rσ2

,
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with outside option normalized to zero. Hence, we can rewrite the problem
as:

max
x

xu (C − x)

The first order condition gives:

1− exp (−r (C − x))

r
− x exp (−r (C − x)) = 0,

from which we get

x =
1

r
(exp (r (C − x))− 1) .

where C = 1
2

1
1+rσ2

. Define L = 1
r

(exp (r (C − x))− 1), then we know
∂x
∂r
≥ 0 iff dL

dr
≥ 0.

dL

dr
=
∂L

∂r
+
∂L

∂C

∂C

∂r

=
1

r2
[1 + r (C − x) exp (r (C − x))− exp (r (C − x))]

− exp (r (C − x))

[
1

2

σ2

(1 + rσ2)2

]
Obviously, for σ2 close to zero, dL

dr
is strictly positive. Hence, the principal

benefit from an increase in the agent’s risk aversion.

Proposition 5 The principal may benefit or hurt by an increase in the
agent’s degree of risk aversion. Specially, he benefits from an increase in
the agent’s degree of risk aversion if the production process is suffi ciently
riskless.

An increase in the agent’s degree of risk aversion has two effects. On
the one hand, an increase in the agent’s degree of risk aversion reduces the
total surplus, which hurts the principal. On the other hand, the agent’s
bargaining power becomes weaker as he becomes more risk averse, which
benefit the principal. For suffi ciently riskless production process, the first
effect is dominated by the second one, leading to a higher utility for the
principal.
Figure 1 illustrate how the principal’s payoff x varies with the agent’s

degree of risk aversion, given different σ. We can see that for small value of
σ, the principal’s payoff is increasing in the agent’s degree of risk aversion;
for large value of σ, the principal’s payoff is decreasing in the agent’s degree
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of risk aversion; for middle value of σ, the principal’s payff is first increasing
and then decreasing in the agent’s degree of risk aversion.

Figure 1

5 Conclusion

This paper builds a simple Nash bargaining model with uncertainty. Espe-
cially we identify the two effects of a change of one bargainer’s degree of risk
aversion: the bargaining power effect and the net surplus effect. An increase
in one bargainer’s degree of risk aversion reduces his bargaining power, while
it also changes the net surplus at the same time. Whether this benefits his
opponent depends on which effect dominates.
The simplicity of our model allow us to apply it in many situations. In an

application to bargaining over insurance contract, we show that Kihlstrom
and Roth (1982)’s result, which states an risk-neutral insurer is better off if
the insuree becomes more risk averse, is also robust for the case of risk averse
insurer. Applying our model in the situtation of bargaining over incentive
contract à la Holmstrom and Milgrom (1987), we show that the principal
may benefit as the agent becomes more risk averse, contrasting with the
prediction of the take-it-or-leave-it model.
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The symmetric Nash bargaining model that we have discussed in the
paper can be easily extended to the case of asymmetric Nash bargaining.
The asymmetric Nash solution will specify risk-sharing rules ŝ(Y ), which
solves the following problem:

max
s(Y )

(
(Eu1(s(Ỹ ))− Eu1(ỹ1))α · (Eu2(Ỹ − s(Ỹ ))− Eu2(ỹ2))

)1−α
,

where the parameter α measures the bargaining power of each bargainer.
A higher α means that the bargainer 1 has a higher bargaining power. A
nature question is how bargainer 1’s bargaining power α affect the property
of comparative statistics. As α increases, the net surplus effect caused by
an increase in bargainer 2’s risk aversion becomes more relevant, while the
bargaining power effect caused by an increase in bargainer 2’s risk aversion
becomes less relevant.
We believe our model has many other applications, because many real-

world bargaining games involve uncertainty. For example, our model can be
applied in the situations where agents form small groups (marriage, partner-
ship...) for the purpose of risk sharing. In India, families nd suitable men
for their daughters from distant villages to reduce correlation in climatic and
production shocks. A primary concern is about the the compositions of such
risk-sharing partnerships, i.e., whether agents in the group have similar or
disimilar risk preference. An important issue in this literature is the conflict
between theory and empirical/experimental evidences. Theoretical match-
ing models predict negative assortative matching (Chiappori and Reny 2006;
Legros and Newman 2007; Schulhofer-Wohl 2006). This result is, however,
not consistent with empirical and experimental literature (Lam 1988; Charles
and Hurst 2003; Di Cagno et al 2012).
One possibility to resolve this conflict is to relax the assumption that the

risk sharing rule is determined by competitive market in the theoretical mod-
els. Instead, one can assume agents share their joint risky income through
Nash bargaining. If we can show that, under some conditions, agents suffers
if his partner becomes more risk averse. Then, the resulting matching will
be possitive assortative. The most risk averse agent will propose to the most
risk averse partner, who is happy to accept the offer. As a result, agents
in the group have similar preference, which is consistent with empirical and
experimental evidence.
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