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Abstract

Online auctions are different from traditional ones in two important fea-

tures: the competition among many sellers and the effects of cross-group ex-

ternalities on buyers and sellers. This paper considers both these two features

to investigate how the sellers set their optimal reserve prices and the buyers

bid for winning a good in online auctions when there are competitive sellers,

as well as their expected returns. We focus on the following four cases. The

first two include the cases of competitive sellers with buyers’ multiauctioning,

and single-auctioning when all have the common reserve price with the same

private value; the last two include cases of collusion and noncollusion among

sellers when they have different private values. In the multiauctioning case,

surprisingly, the identical reserve price may increase as the number of sellers

become bigger, while is decreasing in the number of buyers. By contrast, in

the single-auctioning case, the identical reserve price is the same as that in

one-seller case, and the bid for each potential buyer is strictly decreasing in

the number of sellers. In both cases, the auctioneer and bidder externalities

exist and can be positive. Furthermore, in noncollusion case, the equilibrium

is a sequential one, where each seller sets his reserve price based on his private

value, which makes up a ranking of reserve prices, and leads to the sequential

bidding strategy taken by each bidding buyer. But in collusion case, the results

are quite similar to the multiauctioning case, expect that the common reserve

price is higher. By simple simulation, our main conclusions are demonstrated

and supported to a great extent.

Keywords: Online auctions, Competitive sellers, Multiauctioning, Reserve

prices, Bidding strategy

JEL Classification: D44, C78, D82

∗Contact: Jianxia Yang, School of Business, East China University of Science and Tech-
nology; Hongmin Chen, Hong Wang, Antai College of Economics and Management, Shang-
hai JiaoTong University; Xing Bao, School of Business Administration, Zhejiang Gong-
Shang University. Correspondence Author: Jianxia Yang, Tel: 86-21-52301086, E-mail:
goabroadxia@hotmail.com.

1



1 Introduction

In the last decade, the online-auction industry developed drastically, and the business

model of auctions on the internet has turned to be very successful, which has been

prevalently applied to the area of electronic business, including B2B, B2C, C2C and

G2B. The top online-auction sites, such as eBay, Yahoo, uBid, QXL and Overstock,

have winned large amount of turnovers and profits. For instance, the turnovers of

eBay in 2003 to 2005 are 2.17, 2.90 and 3.00 billion dollars, and just in the second

season in 2008, its’ turnover achieved 1.46 billion dollars, though it does have other

kinds of business, say fixed-price sales.

During the development process of online auctions, quite a lot of fascinating new

features other than the ones in traditional auctions gradually occur, which has been

summarized in Lucking-Reiley (2000), such as the variety of auctioned goods, dura-

tion of auctions, dynamic auctions, some special bidding behaviors, etc. However,

Lucking-Reiley hardly attach importance to two most extraordinary unique features

of onine auctions: competition among sellers, and the effects of the online auction

platform on the behaviors of both selles and bidders (buyers) in terms of design of

auction mechanism and the charge structure. From the perspective of two-sided mar-

ket, the latter feature is substantially induced by the cross-group externalities in the

online auctions, including the externalities of sellers on buyers, which can be called

"auctioneer externalities", and the externalities of buyers on sellers, which called

"bidder externalities". Such perspective is preliminarily supported by Park (2001,

2002).

We incorporate such two important features into our online auction models, which

makes our paper be directly correlated with two streams of literatures. The first is the

research on multi-unit (or multi-object) auctions since there are also many goods to

be auctioned. There are two types of multi-unit auctions: simultaneous auctions and

sequential ones. For the former, there are also two kinds: discriminatory and uniform-

price. Vickrey (1961) firstly proposed the idea of uniform-price multi-unit auctions.

Weber (1983) and Milgrom and Weber (2000) provide a first overview of multi-unit

auctions with bidders whose demands are only one unit. For the cases of multi-unit

demand, the bidders are usually supposed to be homogeneous (Black and de Meza,

1992; Katzman, 1999) or symmetric when their private values are interdependent

(Perry and Reny, 2001, 2002; Ausubel, 2004). The later literatures investigate the in-

fluences on the multi-unit auctions of the heterogeneity of bidders, including different

participation costs, incomplete information in common-value auctions, and different

demands (Engelbrecht-Wiggans and Weber, 1993; von der Fehr, 1994; Krishna and

Rosenthal, 1996; Rosenthal and Wang, 1996; Branco, 1997; Burguet and Sakovics,

1997; Menezes and Monteiro, 2004; Vincent and Chanel, 2007). Recently, some pa-

pers discuss the multi-objects auctions with heterogeneous items, including the design

of a sealed-bid auction procedure (Dasgupta and Maskin, 2000) and a proxy package

auction procedure (Ausubel and Milgrom, 2002). Meanwhile, some papers begin to
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examine the effects of variable supply on the efficiency of multi-unit auctions and

compare that in uniform-price and discriminatory auctions (Damianov and Becker,

2008), though previous fixed-supply literatures are in favor of discriminatory auctions

(Back and Zender, 1993; Wang and Zender, 2002; Nyborg and Strebulaev, 2004).

Another important concern of multi-unit auctions lies in the sequential ones where

the goods are allowed to auction in sequence. The study in this area pays much at-

tention to the price trend induced by bidders’ bidding strategies. Related Theories

establish that the sequential auctions of identical items will result in, on average, iden-

tical (Weber, 1983) or rising prices (Milgrom and Weber, 2000). On the contrary,

many empirical evidences indicate that the prices in multi-item sequential auctions

are decreasing, primarily including the auctions of condominium units (Ashenfel-

ter and Genesove, 1992), wine (McAfee and Vincent, 1993; Ginsburgh, 1998), jew-

ellery (Chanel and Vincent, 1996), works of art (Pesando and Shum 1996; Beggs and

Graddy, 1997), and many other goods.

The second stream is the literature which captures some of the characteristics

of online auctions, including reauctioning, collusion among bidders, and very impor-

tantly, the effects of online auction house (or platform). For one-seller case, resale

situation without auction house has been discussed by a series of papers (McAfee and

Vincent, 1997; Horstmann and LaCasse, 1997; Zheng, 2002). However, only in the

latest studies, the effects of auction house as a mediator of transactions on the online

auctions which can resale are examined (Matros, Zapechelnyuk, 2008a; Matros, Za-

pechelnyuk, 2008b). At the same time, the buyers who enter the online auctions are

empirically observed to reatively easily achieve collusion, for too many online auction

platforms utilize English auction format. For example, in the survey of Lucking-Reiley

(2000), 121 of the 142 surveyed online auction sites use English ascending-price auc-

tions. By empirical evidences, there are three main collusion strategies taken by

buyers: jump bidding (Sherstyuk, 2002; Brusco and Lopomo, 2002; Kwasnica and

Sherstyuk, 2007), sniping (Ockenfels and Roth, 2002, 2006; Wintr, 2008), and with-

holding bid. Furthermore, the effects of the online auction house on the behaviors of

both sellers and buyers have been attached importance by Matros and Zapechelnyuk

(2008a, 2008b). They analyze from a special perspective of designing the optimal

charge schedule of an online auction house, and even of designing the optimal auction

mechanism. However, they ignore the cross-group externalities on both transaction

sides, which may be the key for the online auction house to charge and influence the

behaviors of buyers and sellers from the perspective of two-sided market.

Surprisingly, all the above related literatures ignore these two features. One might

argue that the auctions with competitive sellers may be equivalent to the multi-unit

ones with only one seller. however, they are quite different from each other in at least

three aspects. The first is the strategic design of each seller’s reserve price induced by

their competition. In multi-unit auctions, either traditional or online, there is only

one auctioneer, so most literatures set his reserve price to be zero, or equivalently,

ignore reserve price problem. Even some studies consider the problem in sequential

3



auctions, their logics are lack of concern for the effects of sellers’ competition. By

contrast, each seller will definitely design his reserve price by considering the other

ones’ strategies when they auction one unit homogeneous good. The second is the

multi-auction access and reserve price effects on each buyer’s bidding strategy. By

the practice of online auctions, each buyer can virtually enter all available auctions

for homogenous goods at the same time. So it can be equivalent for him to participate

in sequential auctions. Obviously, the strategic design of the sellers’ reserve prices

have remarkable impacts on his bidding behavior, which is almost not the question

in multi-unit auctions. The last but quite important, is the effects of cross-group

externalities on the behaviors of both sides. Since the online auction market is a kind

of two-sided market, there should be the cross-group externalities on both buyers and

sellers. intuitively, on the one hand, as the number of sellers auctioning homogenous

goods increases, the probability of purchasing a desired good for each buyer become

bigger, which results in the improvement of his expected gain. On the other hand,

with more buyers, each one will bid more aggressively and naturally enhance the

expected revenue of each seller. However, in mult-unit auctions, there is only one

seller, the auctioneer externalities don’t exist for each buyer. Based on the evidences

Park (2001, 2002) provided, such cross-group externalities may be one of the key

factors to attract millions of people to participate in the online auction sites and also

the important reason of the rapid development of online auction industry.

Inspired by these differences and the perspective of two-sided market, we offer

a distinct analytical framework for online auctions by embedding the competitive

sellers and the effects of both auctioneer and bidder externalities in our SIPV auction

models. To our knowledge, we are the first to explore the online auction problems

by considering competitive sellers. In this paper, we discuss two typical categories

of online auction cases: competitive sellers with identical private values and with

different ones.

When all sellers have identical private values, each of them sets a common optimal

reserve price. If all buyers are allowed to bid in all simultaneous auctions, which is

called "multiauction", the common reserve price turn to be lower as the number of

potential buyers increases, while may be higher as the number of sellers become larger,

which are quite counterintuitive. Meanwhile, the total expected return of each seller

strictly decreases when the bidding likelihood ratio of the buyer whose private value is

identical to the common reserve price,  , is high enough. However, some lower end

buyers may bid more aggressively than they do when there is only one seller, though

the expected gain of each buyer who would like to bid in at least one auction strictly

increases in the number of sellers when  is high enough. Analogously, if all buyers

can only single-auction, namely, can bid in only one auction, the common equilibrium

reserve price is the same as that in one-seller case. However, surprisingly, the total

expected return of each seller may decrease as the number of them becomes larger

and strictly increase when the number of buyers grows only when some conditions

are satisfied rather than without any constraint.
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When all sellers have different private values, if the information is symmetric

for them about their private values, we establish that two reasonble equilibria of

noncollusion and collusion among sellers may exist. In noncollusion equilibrium, the

seller with higher private value sets higher reserve price. But the design of higher

reserve price depends on all of the lower reserve prices. Thus, each buyer who can

bid in at least two auctions may take a sequentially descending bidding strategy

from the auction with the lowest reserve price to the one with the highest if his

private value is in the quite low end, while take a sequentially ascending one if his

private value is in the contrary end. Such possible results are quite different from

sequential multi-unit auctions where bidders take monotone bidding strategy, though

the noncollusion equilibrium is substantially a sequential one. By contrast, the sellers

collude with each other and set a common reserve price which is higher than that in

the case that each seller has identical private value and buyers can multiauction. If

the information is asymmetric for the sellers, all of them can just estimate the order of

their own private values, and normally set different reserve prices, which corresponds

to a noncollusion equilibrium. But such estimations make the difference of the lowest

and highest reserve prices diminish and the difference between each pair of adjacent

ones on average as well. Of course, since all buyers can observe the reserve prices,

their bidding strategies are the same as that in symmetric information case.

Fortunately, and surely to some extent, in multiauctioning and single-auctioning

cases in the first category, we can clearly find out the endogenous auctioneer and

bidder externalities. Such two externalities may be positive in less restrictive cases

than the ones we condition. Although these two externalities are not so explicit in

the second category of online auctions, based on our related conclusions, they may

be also positive with some constraints that we don’t propose yet in this paper. By

simple simulating and comparing four cases: one seller, multiauctioning with common

reserve price, collusion and noncollusion, most of our conclusions are demonstrated

and explicitly supported to some extent, especially the positivity of both auctioneer

and bidder externalities.

The remainder of the paper proceeds as follows. Section 2 depicts the primary

features of online auctions. Section 3 builds up the basic model of online auctions

with competition among sellers. Section 4 discusses the online auctions with sellers’

identical private values, including the cases of multiauctioning and single-auctionming

of buyers. The online auctions with sellers’ different private values are investigated

in section 5, including noncollusion case, where may exist a sequential equilibrium,

and collusion one. Section 6 demonstrates our main conclusions and preliminarily

supports some of our conjectures about buyers’ bidding strategies. Section 7 concludes

and proposes some important open questions.
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2 The Features of Online Auctions

Online auctions1 have proved to be particularly popular during the last decade for

industrial procurement (B2B, e.g., Alibaba in China), consumer purchase (B2C and

C2C, e.g. eBay). Online auctions have many special features which are advantagoues

to traditional auctions.

Firstly, onlines auctions permit almost all kinds of goods to be traded, such as

fast moving consumer goods, electronic goods, computer goods, clothes, books and

even toys. However, all these examples are almost infeasible in traditional auctions.

Secondly, for each good, they are often a quantity of sellers to compete with

one another. That means that if you are a buyer and you have lost an auction for

an iphone II provided by seller A, you do get chances to bid for the same ones in

other sellers’ acutions, which increases your winning probability. For instance, On

April, 2009, there are at least 83 sellers on eBay and at least 22 sellers on Overstock

auctioning American Eagle Silver Dollar.

Thirdly, an specific online auction may usually last for a period of time, e.g., 1

day, 3 days, 5 days, 7 days and 10 days. 7-day duration is mostly applied.

Fourthly, once a seller fails to sell his good, he can reauction it for many times,

and theoretically infinte times, even in some auction sites reauction entails extra cost.

It implies that online auctions may be dynamic.

Fifthly, since there are usually more than one seller for each good, sellers may

have incentive to collusively set their reserve prices when the population of sellers is

small enough, which is impossible in traditional auctions.

Finally and quite importantly, at most cases, there must be online auction houses

or platfomrs to provide online auction services,2 and the behaviors of the online

auction platforms can have great effects on the returns of both buyers and sellers

for the online auction market is a two-sided one. Obviously, if an online auction

platfom have more sellers, and subsequently more goods for auctioning, there will

be more buyers willing to log in it, and vise versa. Such effects are called positive

cross-group externalities and are the reason why eBay are quite famous and profitable

throughout the world. As we have known, the online auction platform can change

the numbers of both buyers and sellers by adjusting its related fees, and of course

can have effects on sellers’ design of reserve prices and the buyers’ bidding strategies.

According to Luking-Reiley (2000), the fees an online auction platform charges may

iinclude registration fee, listing fee, feature category and showcase fee, commission

or closing fee. At most cases, sellers are charged listing fee and closing fee, buyers

are charged nothing (Matros, Zapechelnyuk, 2008a). For instance, the latest fee rates

of top 5 auction site Overstock as of August 3rd in 2009 primarily include listing

upgrades fees (optional promotional serveices fees), insertion fees, reserve fees, and

closing fees (see talbe 1).

1There are many similar terms, such as "internet auctions", "web auctions", "network auctions".
2Sashi and O’Leary (2002) provides the B2B online auction platform’s operating mechanism.
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Table 1: Overstock auction fees on August, 2009

Insertion Fees

Starting Price Range Fee Starting Price Range Fee

$0.01 - $0.99 $0.10 $50.00 - $199.00 $1.55

$1.00 - $9.99 $0.20 $200.00 - $499.99 $2.35

$10.00 - $24.99 $0.40 $500 and up $3.15

$25.00 - $49.99 $0.75 – –

Reserve Fees Closing Fees

Reserve Price Range Fee Closing Amount Fee Percentage

$0.01 - $49.99 $0.66 $0.01 - $25 3%

$50.00 - $199.99 $1.40 $25.01 - $1,000 $0.75+2% of the

balance over $25.00

$200.00 and up 1% of Reserve Price Over $1,000 $20.25+1% of the

(Max Fee $70) balance over $1000

In terms of economic sense, the second, fourth and last features are quite im-

portant and even unique for us to understand online auctions. The fourth and last

features have been partially investigated by Matros and Zapechelnyuk (2008a, 2008b),

hence we just focus on the second one and part of the last one. .

3 Basic Model

We formalize the second feature and part of the last feature (the cross-group exter-

nalities) of online auctions in our model by considering online auctions with  buyers

and  sellers who have homogenous goods for sales. We require   ,  ≥ 2,
which is the key for our main conclusions. All buyers (or bidders) have private values

for the goods, i.i.d. random variables with a distribution function  on interval [ ].

We assume that  is differentiable and has positive density  . Additionally, assume

that  satisfy Myerson (1981)’s regular condition, namely,  − 1− ()
()

is strictly in-

creasing on [ ]. Without loss of generality, assume every agent knows his own

private value. For simplicity, suppose all agents are risk neutral. Namely, our model

is a SIPV model, expect that there are more than one seller.

Consistent with the standard setting of traditional auctions, all sellers auction

their goods only one time, and they also announce their reserve prices to the potential

buyers. For getting rid of the effects of the online auction platform, we assume the

platform provides two main auction formats: Dutch (high bid) and English, and don’t

charge buyers and sellers (or just requires sellers to pay the listing fees).3

3In the theory of two-sded market, the online auction can make profit by charging his advertisers,

usually manufacturers, the advertisment fees though it may charge the sellers and buyers nothing.

In fact, Taobao in China do take such strategy.

7



For convenience, we define “the bidding likelihood ratio” (BLR) for buyer whose

private value is  as

 () ≡         

      


Since all buyers are symmetric, we have  () = ()∀ ∈ {1 2  },  ∈
[ ]. Meanwhile, define


 () ≡         

       


as “the winning likelihood ratio”(WLR) for buyer . Similarly, 
 () = ().

4 Seller’s Competition with Identical Private Val-

ues

4.1 Bidding by Multiauctioning

Assume the sellers have identical private values, which are independent of bidders’

values. There are three key assumptions: (1) each seller knows all sellers’ private

values; (2) each buyer can multiauction4 for maxizing his expected gain from the

auctions; (3) all sellers auction their goods simultaneously.

The permission of multiauctioning implies that each buyer can participate in more

than one auction simultaneously. In terms of feasibility, it is equivalent to sequentially

participating in each auction if necessary for a buyer. In details, when the auction

format is English (ascending), each buyer can bid in an auction at first, and once the

current highest price is higher than his bid, he can submit the same bid in another

auction at once until no current price is lower than his first bid in every auction.

Then, he can submit a little higher bid and sequentially repeat it in each available

auction again. Such process last until he wins a good or totally loses all auctions.

Similarly, in Dutch format auctions, each buyer can take the parallel bidding process,

except that once some buyer wins at a higher price which is bigger than his optimal

bid in an auction, he will switch to another auction or equivalently, to the other

auctions.

4.1.1 Buyers’ Bidding Strategies and Sellers’ Reserve Prices

According to Riley and Samuelson (1981), there is a common equilibrium bidding

strategy in which each buyer makes a bid  ∀ ∈ {1 2  } when there are 

auctions available, which is strictly increasing function of his value :

4Similarly to the terminology of the literature of the two-sided market, we utilize the term

"multiauctioning" for the buyers when they can participant in all available auctions simultaneously,

which is parallel to multihoming..

8



 =  () ∀ ∈ {1 2  } 
Since each seller knows all sellers’ private values which are identical, then their optimal

reserve prices are symmetric, that is, ∗. Thus, we have Proposition 1.

Proposition 1 The common equilibrium bidding strategy for either high bid auction

or English auction yields the expected revenue for each seller as





Z 

∗
[ () +  ()− 1] £1− £1−  −1()

¤¤
 (1)

We put all proofs in the appendix. Proposition 1 is an extension of Riley and

Samuelson (1981)’s proposition 1 in the setting of  sellers. Naturally, with permis-

sion of multiauctioning, each bidding buyer would like to submit a bid in an auction

where the current highest bid lower than his previous bid in the other auctions. As a

result, each seller’s auction equivalently has  potential bidders. Hence, The expected

payment of each buyer who can submit bids can be virtually viewed to be divided by

all sellers on average, which may result in the diminishment of each seller’s expected

revenue.

Furthermore, with sellers’ competition, each bidding buyer may possibly change

his bidding strategy by shading his bid to a greater extent relative to that in one-seller

case. Moreover, since multiauctioning can be viewed as sequentially participating in

each auction, each buyer may bid for  times if he can’t win once in the previous

−1 auctions. Hence, Propostion 2 supply such perception with an insightful result
for considering a buyer’s all possible bids in high bid auctions.

Proposition 2 In high bid auction, the equilibrium bidding strategy of buyer  when

there are  auctions available is

() =  −
R 
∗

h
1− [1− −+−1()]

i


1− [1− −+−1()]


∀ ∈ {1 2 }  (2)

Moreover, his expected gain from auctions is strictly increasing in  if ∗

≤ 0.

Intuitively, with more sellers, the probability that buyer wins becomes higher

with more sellers, which results in a lower bid. So if a buyer bids more than once, his

bidding strategy should be declining. However, such logic might not hold for some

bidding buyers with quite low private values for their marginal increments of winning

probability in an auction by enhancing their bids may be so high that they would

like to bid more aggressively.

Obviously, the common bidding strategy in the Proposition reflects a quite differ-

ent rationale from that in discriminatory multi-unit auctions in SIPV model where

each bidder’s estimating his winning probability involves an expected one by using
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the tool of order statistics (e.g. Milgrom and Weber, 2000). By contrast, in our

model, each buyer substantially take the similar bidding strategy for each auction

ecpect that his winning probability has changed when the number of available auc-

tions decreases. In fact, such bidding rationale for each buyer is quite similar to the

sequential first-price sealed-bid auctions in the literature of multi-unit auctions (We-

ber, 1983; Milgrom and Weber, 2000). However, each bidder when risk neutral use

a symmetric equilibrium strategy in such auction which makes progressively higher

bids in each successive stage of the auction, but the bidding strategy when sellers

compete against each other may not be increasing for every buyer. This is one of the

differences, induced by the strategic design of common reserve price by competitive

sellers, between the auctionss with competitive sellers and the sequential multi-unit

ones where the reserve price in each round or stage is set to be zero.

Let us focus our interest on the effects of sellers’ competition on their optimal

reserve price. Based on Proposition 1, we can easily derive such effects.

Proposition 3 The optimal reserve price ∗ in either high bid auction or English
auction, below which is not worthwhile bidding, is

∗ =
−1(∗)

1− [1−  −1(∗)]
0 +

1−  (∗)
(∗)

 (3)

Moreover, when Myerson’s regular condition is satisfied, ∗ is decreasing in  if

 ≡ 1− [1− −1(∗)]


[1−  −1(∗)]
 ≤ − ln £1− −1(∗)

¤
 (4)

while ∗ is increasing and each seller’s total expected return is strictly decreasing in
 if

 ≥ − ln £1− −1(∗)
¤

 (5)

In Proposition 3,  is a buyer’s BLR when all buyers can multihome the

auctions. The proposition tells us that as the competition of sellers becomes more

intense ( becomes larger), each seller’s reserve price is decreasing in  if  is

relatively small, while ∗ is increasing and each seller’s total expected return is strictly
decreasing in  if  relatively large. When  is relatively small, the result

is intuitive since driven by the more intense competition, each seller will lower his

reserve price, which will also enhance each buyer’s probability of winning at least one

auction and subsequently, will increase his total expected return.

By contrast, when  is relatively large, the probability of each buyer’s winning

at least one auction is increasing as  becomes larger, which induces that each

seller’s demand is less elastic though with indirectly more intense competition. As

a result, the reserve price should be turned up for each seller. Such conclusion is

quite interesting, even contradicts the traditional competition theory in Industrial

Organization. However, from the perspective of two-sided market, such conclusion
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may be reasonable, for there are positive cross-group externalities from the sellers to

buyers, and more sellers, more larger such positive externalities. Since each seller can

only provide one unit good, and   , all sellers don’t have the incentive to lower

their reserve prices to grab the others’ buyer bases to earn more expected revenues

when  is relatively large. Meanwhile, in such a case, larger positive externalities

induced by larger  make each seller’s demand less elastic, which naturally leads to

a higher reserve price.

Although the reserve price becomes higher when BLR is relatively large, the total

expected return for each seller is decreasing. Because more intense competition among

sellers induces larger positive externalities for each buyer, and as a result, directly

affects each buyer’s bidding strategy, and hence indirectly has a negative effect on

each seller’s total expected return, which coincides with the traditional competition

theory.

To be emphasized, since we obtain such an equilibrium by a way equivalent to

maximize the sum of all sellers’ expected revenues and evenly allocate it to each seller,

it can be viewed as the result of noncooperative collusion of all sellers.

4.1.2 Cross-Group Externalities in Online Auctions

In this section, we investigate the cross-group externalities between the sellers and

the buyers in online auctions, which is so important that it can have effects on the

equilibrium behaviors of both sides as well as the ones of the online auction platforms.

Before discussing this problem, we should understand how changes of the numbers

of both buyers and sellers affect each buyer’s expected gain and each seller’s total

expected return.

Corollary 1 When Myerson’s regular condition is satisfied, ∗ is decreasing in  and
strictly decreasing if ∗  . Moreover, each seller’s total expected return is strictly

increasing in  if

(∗) ≡ 1− [1−  −1(∗)]


 [1−  −1(∗)]
−1

−1(∗)
≥ − ln (∗) (6)

On the one hand, the first result of Corollary 1 is quite counterintuitive for each

seller’s optimal reserve price would be increasing as the number of buyers increased

intuitively. However, such a result is reasonable, because holding the reserve price

constant, a seller’s expected marginal benefit increases as  become larger by (3),

so for maximizing his total expected return, he should lower his reserve price to

make such marginal benefit decrease to the level equal to his private value which is

his marginal cost. On the other hand, each seller’s total expected return is strictly

increasing in  is very intuitive for higher of the buyers’ bidding as the number of

buyers increases, which results in bigger of the probability that his good is auctioned

out and higher of possible dealing price.

11



According to the literature of two-sided markets, the market of online auctions

can be viewed as a two-sided market. However, such a market is special for the

two sides “interact” by auctions. By the terminology of two-sided markets, we call

the cross-group externalities of buyers on sellers “the bidder externalities”, while the

ones of sellers on buyers “the auctioneer externalities” if these externalities exist.

The former reflects the effects of the change of the number of buyers on the total

expected returns of sellers, while the latter reflects the effects of the change of the

number of sellers on the expected gains of buyers. If the increase of the number of

buyers improves each seller’s total expected return, then we say that such bidder

externalities are positive, while say that such bidder externalities are negative in the

reverse case. Such sorting is similar to the auctioneer externalities. Thus, based on

Proposition 2, 3 and Corollary 1, we summarize the results about these externalities

in Theorem 1.

Theorem 1 In either high bid auction or English auction, when Myerson’s regular

condition is satisfied, the auctioneer externalities are positive if  ≤ − ln [1−  −1(∗)]

,

and the bidder externalities are positive if (∗) ≥ − ln (∗).

Theorem 1 is very important for it permits us to use the analytical method of two-

sided markets to investigate the online auctions, especially the behaviors of online

auction platforms and corresponding effects on the behaviors of both sides. The

results in the Theorem indicate that there do exist cross-group externalities in online

auctions, and that each buyer can benefit from the auctioneer externalities if the

bidding likelihood ratio for a typical buyer is not so large, and each seller can also

benefit from the bidder externalities if the winning likelihood ratio is not so small.

To be emphasized, such cross-group externalities are endogenous other than the

ones in the literature of two-sided markets which are exogenously supposed.5 This

result can be used to explain from a perspective of two-sided markets why by contrast

to the traditional auctions, there are thousands of both buyers and sellers joining the

online auction markets, and why they would like to join the big online auction sites

or platforms, such as eBay, Yahoo, Ubid and Overstock, which coincides with Park

(2001, 2002)’s empirical results. For instance, in 2008, there were about 90 millions

of active users registering at eBay, and there were more than 10 millions categories

of goods listed in eBay to be auctioned.

5In the literature of two-sided markets, e.g., Armstrong (2005), the utility of an agent in group

1, say, a buyer, is 1 12 − 1, the one in group 2, say, a seller, is 2 21 − 2, where 
is the benefit that an agent in group  enjoys from each agent on the other side,  is the number

of agents from group ,  is the platform’s price to group  ∀ 6  ∈ {  }. In such model, 
captures the benefit of an agent in group  from group ’s externalities, while  the benefit from

group ’s externalities, which are exogenously described.
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4.2 Bidding by Single-Auctioning

In this setting, each buyer can only participate in one seller’s auction. For symmetric

equilibrium, there must be a population of 

buyers who participate in each seller’s

auction. Thus, each seller sets his optimal reserve price as he was a monopolist.

Therefore, we can directly obtain the corresponding conclusions as follows (since the

results are direct, the corresponding proof is omitted ).

Proposition 4 In either high bid auction or English auction, the equilibrium yields

the expected revenue for each seller as





Z 

∗
[ () +  ()− 1]−1() (7)

In high bid auction, the equilibrium bidding strategy of buyer  is

() =  −
R 
∗

−1()

−1()
 (8)

and () is strictly decreasing in . Moreover, the optimal reserve price ∗ in either
high bid auction or English auction is

∗ = 0 +
1−  (∗)
(∗)

 (9)

which is the same as the one with only one seller.

It seems surprisingly that the reserve price for each seller isn’t affected by sellers’

competition. For each buyer now can’t gain more without participating in the other

sellers’ auctions. However, each buyer’s bidding strategy is different from the one in

one-seller case, and is strictly decreasing in the number of sellers. This is because in

each seller’s auction, the potential number of bidders decreases from  to 

, that is,

the competition among the buyers becomes less intense than the one in the case of

bidding by multiauctioning, so each buyer bids to a less aggressive extent.

However, our interests focus on how the changes of the numbers of both buyers

and sellers affect each buyer’s expected gain and each seller’s total expected return.

Proposition 5 In the SIPV model without buyers’ multiauctioning, each buyer’s ex-

pected gain is strictly increasing in  in either high bid auction or English auction;

while each seller’s total expected return is strictly decreasing in  if 1+ln(∗) ≥
0, and is strictly increasing in  if 1 + ln (∗)  0 and

1−  (∗)
 (∗)

≥ − ln (∗)
1 + ln(∗)


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Proposition 5 is parallel with Proposition 2 and 3. When buyers can’t multiauc-

tion, the auction situation for each seller is similar to that of one-seller case, except

that there are much less buyers for each auction ( 

other than ). Therefore, as 

increases, each buyer’s expected gain from participating in a specific auction improves

for there are less competitors.

For sellers, if the reserve price is set low enough, namely, 1 + ln (∗) ≥ 0,
the competition effects will work and each seller’s total expected return will strictly

decrease as  increases. Moerover, if one-buyer bidding likelihood ratio
1− (∗)
 (∗)

is

high enough (not less than
− ln (∗)

1+ln(∗)
), each seller’s total expected return strictly

increases in , which implies that any seller’s total expected return is correlated with

not only the number of buyers, but the distribution of a typical buyer’s private value.

Importantly, now the cross-group externalities arised by online auctioning exist as

well. Based on Proposition 5, the auctioneer externalities are always positive, while

the bidder externalities may be positve when one-buyer bidding likelihood ratio is

high enough.

Theorem 2 In the case of bidding by single-auctioning, in either high bid auction or

English auction, the auctioneer externalities are positive, while the bidder externalities

are positive if 1 + ln (∗)  0 and
1− (∗)
 (∗)

≥ − ln (∗)
1+ln(∗)

.

Such asymmetry of two-sided externalites is primarily the result of the substantial

effects of the distributions of buyers’ private values on each seller’s reserve price

design. Imagine, if there are too many buyers with lower private values, as  increases,

the optimal reserve price of each seller is hardly adjusted or is adjusted downwards

other than upwards, say, exponential distribution with a large parameter .

5 Sellers’ Competition with Different Private Val-

ues

There is a more general case in online auctions that each seller only knows the distrib-

utions of the others’ private values. Hence, in this section, we consider this more gen-

eral case with two key assumptions: (1) each sellers’ private value 

0 ∀ ∈ {1 2 }

is an i.i.d. random variable for the others with a distribution function  and density

 on interval [ ], (2) all sellers set their reserve prices at the same time, and once

the reserve price is set by each seller, he can’t be permitted to change it during the

progress of his auction by the online auction platform. The latter assumption is not

so restrictive for many online auction platforms do apply such auction format. Ac-

cording to Lucking-Reiley (2000), about 10 auction sites design the auction format in

which the sellers should announce their reserve prices other than have secret reserve

prices.
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5.1 Bidding byMultiauctioning: Complete Information Case

First, we consider a preliminary case that each seller has different private value and

they know the others’ private values. For simplicity, assume after one of the sellers

auction out his good, the others in progress still have the same distributions of buyers’

private values. This assumption is quite helpful which makes the simultaneous auc-

tioning equivalent to sequential auctioning from the seller with lowest reserve price

to the one with highest reserve price. Since each seller may have different reserve

price, without loss of generality, assume the seller ’s private value is 0, and his

optimal reserve price is increasing in 0. Then all reserve prices can be ordered as

∗ ≤ −1∗ ≤  ≤ 1∗. Obviously, the good with lower reserve price will auction out
more easily and earlier. Hence, we assume that the good with lower reserve price will

be auctioned out earlier than the one with higher reserve price. Thus, for the rest of

buyers after the auction with +1∗ finished, they only face  sellers (see figure 1).

Figure 1: The potential sellers for the rest of buyers

Obviously and importantly, different buyers with different reservation values will

have different expected payments. Therefore, we should segment a typical buyer into

+ 1 possible groups, see Figure 2.

Figure 2: The segmentation of a typical buyer

In group 0, the buyer has private values lower than ∗ thus wouldn’t enter even
an auction, while in group , the buyer’s private values is not less than 1∗, which
implies that he has the opportunity to win a good auctioned. Generally, define 0∗ ≡ ,

then for buyer  with private value ∗ ≤   −1∗ ∀ ∈ {1 2 }, he only enters
− +1 auctions with reserve prices not higher than ∗. Hence, different seller may
have different size of buyers participating in his auction.
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5.1.1 Buyers’ Bidding Strategies and Expected Gains

We still consider the auctions with the property that there is a common equilibrium

bidding strategy which is strictly increasing function of each buyer’s private value:



 = 


 () ∀ ∈ {1 2  }   ∈ {1 2 } 

For seller , assume that his ordered reserve price is ∗. Since  −  buyers might

have obtained their desired goods, there might be −+  buyers entering seller ’s

auction. Thus, for buyer  with  which satisfies 

∗ ≤   −1∗ , his probability to

win a good is

1−Π
−+1
=1

£
1−  −()

¤
 (10)

when he reports  given no goods have been auctioned out. He will sequentially enter

from seller ’s auction to seller ’s until he wins a good. Then his total expected

gain can be expressed as


³
 ;

©
∗
ª
=

´
= 

£
1−Π

−+1
=1

£
1− −()

¤¤− 


³
;
©
∗
ª
=

´
 (11)

where 


³
;
©
∗
ª
=

´
is his expected payment. Accordingly, his first order condi-

tion is


³
 ;

©
∗
ª
=

´


¯̄̄̄
¯̄
=

= 

£
1−Π

−+1
=1

£
1− −()

¤¤


−0


³
;
©
∗
ª
=

´
= 0

(12)

(12) must hold for the buyers belonging to group  whose private value satisfies

∗ ≤   −1∗ .

Furthermore, it is very important to obtain the ex ante expected payment bound-

ary conditions for buyers with {∗}1= in turn. First, the boundary condition for

seller ’s auction can be expressed by

∗ 
−1(∗ )−  (∗ ; 


∗ ) = 0 (13)

Thus by (12) and (13), the expected payment of a typical buyer  with  ∈ [∗  −1∗ )

is


 (; 


∗ ) = ∗ 

−1(∗ ) +
Z 

∗

−1()

= 
−1()−

Z 

∗

−1() (14)

Similarly, the expected payment of a typical buyer  with  ∈ [∗ −1∗ ) is




³
;
©
∗
ª
=

´
= 

³
∗;
©
∗
ª
=

´
+

Z 



∗

£
1−Π

−+1
=1

£
1−  −()

¤¤


(15)
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Given  −  goods have been auctioned out, the expected gain of a typical buyer 

with  ∈ [∗ −1∗ ) from the rest auctions is


³
 ;

©
∗
ª
=

´
= 

−+−1()− 



³
;
©
∗
ª
=

´
 (16)

The corresponding boundary condition for seller ’s auction can be expressed by

∗
−+−1(∗)−  

³
∗;
©
∗
ª
=

´
= 0 (17)

Combining (16) and (17), by FOC condition of 
³
 ;

©
∗
ª
=

´
we have





³
;
©
∗
ª
=

´
= 

−+−1()−
Z 



∗
−+−1() (18)

Since the buyer with ∗ sequentially enters from seller ’s auction to seller ’s, we

have


³
∗;
©
∗
ª
=

´
= 

¡
∗; 


∗
¢
+

−X
=1

£
Π
=1

£
1− −(∗)

¤¤
−

³
∗;
©
∗
ª−
=

´


Define  (∗; 

∗ ) ≡

£
Π=0
=1

£
1− −(∗)

¤¤
−

³
∗;
©
∗
ª−
=

´
, then


³
∗;
©
∗
ª
=

´
=

−X
=0

£
Π
=1

£
1−  −(∗)

¤¤
−

³
∗;
©
∗
ª−
=

´
 (19)

Hence, by (14), (15) and (18), we obtain




³
;
©
∗
ª
=

´
=

−X
=0

£
Π
=1

£
1−  −(∗)

¤¤
−

³
∗;
©
∗
ª−
=

´
+

Z 



∗

£
1−Π

−+1
=1

£
1− −()

¤¤
=

−X
=0

£
Π
=1

£
1−  −(∗)

¤¤ "
∗

−−1(∗)−
Z 


∗

−∗
−−1()

#

+

Z 



∗

£
1−Π

−+1
=1

£
1− −()

¤¤
 (20)

Therefore, by sequential entering strategy, each buyer’s total expected gain can be

derived if all sellers set different optimal reserve prices.
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Proposition 6 If all sellers set different reserve prices, then for buyer  with  ∈
[∗ 

−1
∗ ) ∀ ∈ {1 2 }, his total expected gain is


³
 ;

©
∗
ª
=

´
= ∗

£
1−Π

−+1
=1

£
1− −(∗)

¤¤
+

Z 



∗

£
1−Π

−+1
=1

£
1− −()

¤¤


−
−X
=0

£
Π
=1

£
1− −(∗)

¤¤ "
∗

−−1(∗)−
Z 


∗

−∗
−−1()

#
(21)

Intuitively, the total expected gain of buyer  with  ∈ [∗ −1∗ ) is affected by

 −  + 1 reserve prices not higher than . In the case of sellers with identical

private values, when there are  sellers are available and  − +  buyers left, the

expected payment of a buyer , whose private value is not lower than the reserve price,

is 

h
1− [1− −+−1()]


i
− R 

∗

h
1− [1−  −+−1()]

i
 ∀ ∈ {1 2 3 4 5}

for there is a common reserve price for all sellers. However, in the current case, the

expected payment of each left buyer, who can bid for at least one still available auc-

tion, is correlated with the reserve price(s) set in the previous acomplished auction(s)

since the sellers have different private values, though except for the one of each bid-

ding seller in the auction with lowest reserve price. Such correlation between each

buyer’s expected payment and the previous reserve price(s) makes each buyer take

quite different bidding strategy rather than that in the case of sellers with identical

private values. Furthermore, It also makes each buyer’s bidding strategy differ from

that in the sequential first-price mult-unit auctions where there are either no reserve

price at all or a common one for only one seller.

Now, let us investigate each buyer’s equilibrium bidding strategy in high bid

auction. Based on (20), when there are  −  goods left ∀ ∈ {0 1 − }, the
expected payment of a typical buyer  with  ∈ [∗ −1∗ ) can be expressed by

−


³
;
©
∗
ª
=

´
=

−X
=

£
Π
=+1

£
1− −(∗)

¤¤ "
∗

−−1(∗)−
Z 


∗

−∗
−−1()

#
+

Z 



∗

£
1−Π

−+1
=+1

£
1−  −()

¤¤
(22)

Since the buyer pays if and only if he is the high bidder, his expected payment is

−


³
;
©
∗
ª
=

´
=
£
1−Π

−+1
=+1

£
1− −()

¤¤
− () (23)

Therefore, combining (22) and (23), we obtain Proposition 7 as each buyer’s sequential

equilibrium bidding strategy.

Proposition 7 ∀ ∈ {1 2 },  ∈ {0 1 − }, a typical buyer  with  ∈
[∗ 

−1
∗ ) takes a sequential equilibrium bidding strategy as following: if there are

18



−  goods left, his bidding is

− () =  −
R 


∗

£
1−Π

−+1
=+1

£
1−  −()

¤¤


1−Π
−+1
=+1 [1− −()]

− ∗
£
1−Π

−+1
=+1

£
1− −(∗)

¤¤
1−Π

−+1
=+1 [1− −()]

+

P−
=

£
Π
=+1

£
1− −(∗)

¤¤ h
∗

−−1(∗)−
R ∗
−∗

 −−1()
i

1−Π
−+1
=+1 [1− −()]

(24)

Moreover, the monotonicity of − () in  −  may depend on , ,  and©
∗
ª1
=

.

Surprisingly, Proposition 7 establishes that each buyer’s sequential bidding strat-

egy may possibly not be ascending as the number of goods not auctioned out de-

creases, which is quite counterintuitive. Intuitively, less goods left, more difficult to

win an auction, and the intensity of corresponding competition among buyers almost

unchanges for   . As a result, each buyer who enters such an auction left

will bid more aggressively in order to maximize his total expected gain. Such logic

seems so reasonableLet that we can easily understand this point by demonstratiing

an example of high bid auction. There are two sellers, say A and B, A’s reserve price

is 50 dollars, while B’s is 80 dollars. For a buyer whose private value is 80 dollars, he

will firstly bid for the good with reserve price of 50 dollars, and if he lost, he would

bid for seller B’s good. Since his private value is equal to seller B’s reserve price, then

he can only bid 80 dollars for seller B’s good given he lost seller A’s auction, while

obviously, from our proposition, we know he will bid less than 80 dollars for seller A’s

good. Thus his sequential bidding strategy is ascending.

However, such logic ignores the impacts of both  and
©
∗
ª1
=

, which may be

quite significant to decide how the bidding strategy is for the corresponding buyer.

To consider both of them, imagine a buyer with private value just slightly higher

than −1∗ when  is not too small and ∗ is slightly lower than −1∗ . On the one

hand, given he has lost the first auction of the seller with ∗ , in order to optimize
his expected gain from the second and his last auction, he should increase his bid.

Nevertheless, since the difference between −1∗ and ∗ is small enough, so the buyer
may bid  () which is slightly higher than ∗ . Obviously, when he faces his last
auction, his probability to win the auction decreases to a great extent, hence he should

bid by a big jump relatve to  (). According to our supposition, his second (last)

bid must exceed his private value, so he only can bid , which is not the optimal. On

the other hand, the marginal probability to win a good increases by enhancing what

he bids in his first auction to a larger degree than the one induced by the identical

increment of what he bids in his second auction, so he should ajdust his first-auction

bid upwards and second-auction bid downwards. Such adjustment may last until

the marginal winning probability of each auction equals to each other, and result in

that the first optimal bid is higher than the second since the identical bid in his first
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auction may generate a much higher marginal winning probability than the one in

his second auction. Naturally, if the difference between −1∗ and ∗ is big enough,
such decending bidding strategy may not be applied by the buyer. While for a certain

buyer with much high private value which is close to  and higher than 1∗, the failure
in the first auction has a relatively small effect on his later winning probability or

even a slight effect when  is large enough, so as a whole, ascending bidding strategy

may be optimal for him. Meanwhile, applying such analytical logic, the buyers with

intermediate private values may bid ascendingly, descendingly, or nonmonotonely.

Based on the above analysis, we cann’t explicitly obtain a monotone bidding

strategy in such sequential equilibrium. For the complexity of − () in Proposition

7, we just propose the reasonable conjecture below to gain an insight into each buyer’s

bidding strategy.

Conjecture 1 There may be two critical private values of buyers in high bid auctions:

 =  (
©
∗
ª1
=

) and  =  (
©
∗
ª1
=

), ∗ ≤    ≤ , such

that each buyer with  ≤  takes the descending bidding strategy from the auction

with lowest reserve price to the one with highest reserve price, and each buyer with

 ≥  takes the ascending bidding strategy, while the bidding strategy of each buyer

with      is ambiguous and can be only decided by Proposition 7.

According to our above analysis, if there does be  and  ,  may be de-

creasing in , while  may be increasing in  since the competition among buyers

become more intense as  turns to be bigger. Meanwhile, both  and  may

be decreasing as the difference between each pair of adjacent reserve prices becomes

larger, which means more buyers apply the ascending bidding strategy and less buyers

apply the converse one.

5.1.2 Sellers’ Reserve Prices and Expected Revenues

Since the auction with lower reserve price may end earlier than the one with higher

reserve price, then sellers with different private values may possibly have different

expected revenues. For seller  with ∗,  −  +  potential buyers left will enter

his auction and each will take the bidding strategy 

 () ∀ ∈ {1 2  −+ } if

not all the reserve prices are identical, so his expected revenue from buyer  through

auction is


³
;
©
∗
ª
=

´
=

Z 



∗

£
Π
−
=1

£
1− −()

¤¤




³
;
©
∗
ª
=

´
 () 

Hence, by (18), we obtain all sellers’ expected revenues from their own auctions as

following.

Proposition 8 When all buyers take their common sequential equilibrium bidding

strategies, in either the high bid auctions or English auctions, ∀ ∈ {1 2 },
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seller  with ∗ obtains his expected revenue of


³©

∗
ª
=

´
= (−+)

Z 



∗

£
Π
−
=1

£
1−  −()

¤¤ ∙ −+−1()−R 


∗
−+−1()

¸
 () 

(25)

if all the reserve prices are different.

The Proposition implies that although seller  expected revenue from his auction

is only explicitly affected by his own reserve price it does be implicitly affected by the

reserve prices of the other sellers through its’ order in all reserve prices. Such impacts

reflect the effects of sellers’ competition, which is even unnecessary to be considered

in sequential multi-unit auctions with one seller.

Assume all sellers’ private values can be ordered like 0 ≤ −10 ≤  ≤ 10. then

0 = 

0. Now interestingly, the probability that seller  will still retain his good after

auction is more complicated than one seller case, even than  sellers with identical

private values, which can be expressed by

 
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©
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¤
 (26)

Thus, based on (25) and (26), seller ’s total expected return is


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∗
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

∗
−+−1()

¸
 () 

(27)

We therefore have the following result about each seller’s optimal reserve price.

Proposition 9 Given all optimal reserve prices are different, the seller ’s optimal

reserve price ∗ ∀ ∈ {1 2 } in either high bid auction or English auction satis-
fies
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
∗)

 (28)

which is dependent of the number of all buyers and the other  −  lower reserve

prices.

Proposition 9 indicates that when the sellers’ private values are different, except

seller , the other sellers’ optimal reserve prices are correlated with the sellers whose

reserve prices are lower, which is distinguished from the case of sellers’ identical

private values. Since a typical seller  may auction out his good only after the other

 −  goods with lower reserve prices have been auctioned out, his optimal reserve
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price is an expected one. Once the left buyers enter his auction, seller  has the market

power equivalent to a monopolist, so he can set his reserve price by the pricing rule

of monopoly. Based on (28), seller ’s expected marginal cost 

is


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= 


0Π
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=0

£
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and his expected marginal benefit 
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Thus, his optimal setting is to make 

=


hold, which is the economic sense

of (28).

Such "monopoly power" makes the typical seller  can announce a reserve price

strictly greater than his personal valuation, just like the cases of traditional auctions

and online auctions with seller’s identical private values forΠ
−−1
=0

£
1−  −(−∗ )

¤


Π
−
=1

£
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¤
. In the case of tradition auctions, say, Riley and Samuelson

(1981),
1− (∗)
(


∗)
is the accumulative information rent of the buyers whose private values

are higher than ∗. However, since Π
−
=1

£
1− −()

¤
decreases in , the second

part of RHS in (28) is less than
1− (∗)
(


∗)
. This implies that conditional information

rent seller  can extract decreases as seller ’s reserve price is ranked higher. By

contrast, he puts bigger weight on his private value to optimize his reserve price.

However, some important problems still confront us: Whether setting different

reserve prices is an equilibrium? If it does be an equilibrium, is it the only one?

Based on the analysis of the case that all sellers’ private values are identical, setting

a common reserve price may intuitively be a reasonable equilibrium, which is a tacit

collusion result of all sellers. If such a result exists, the optimal common reserve

price should be not less than the most highest one of all sellers’ private values. Our

intuition can be verified by Proposition 10.

Proposition 10 If 01  02    0, then in either high bid auction or English

auction, {∗}1= may be an equilibrium. Meanwhile, if ∗ ≥ 01, then all sellers set

a common reserve price as

∗ =
³X1

=
0

´ −1(∗ )
1− [1−  −1(∗ )]

 +
1−  (∗ )
(∗ )

(29)

and allocate the real th highest bid to the seller with 0 ∀ ∈ {1 2 } if feasible
may also be an equilibrium that is a result of tacit collusion of all sellers, under which

∗ is strictly decreasing in . Furthermore, if 0 is a typical seller’s private value

and ∗ is his optimal reserve price in the parallel case that all sellers have identical
private values, when

P1

= 0 ≥ 0, 

∗ ≥ ∗, and vice versa.
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The equilibria in Proposition 10 consist of two extremes: the former is the one

that all sellers wouldn’t like to collude with each other, and the latter is the one that

all sellers tacitly collude. Naturally, when  is quite large, the collusion is very hard

to achieve, which is the case that can be described by the former; while when  is

small enough, all sellers can easily achieve collusion, which corresponds to the latter.

5.2 Bidding byMultiauctioning: Incomplete Information Case

It’s time for us to turn to the asymmetric information case. The difference between

complete information case and incomplete information one only lies in the behaviors

of sellers, because current situation is indifferent for all buyers who have known all

the reserve prices before they begin to bid. Moreover, since each seller doesn’t exactly

know each other, a tacit collusion equilibrium may be hardly achieved, so we ignore

corresponding analysis.

5.2.1 Sellers’ Expected Revenues

Based on the results in the preliminary case, for seller  with private value 0 ∀ ∈
{1 2 }, the order of his reserve price in all sellers’ have possible cases. Namely,

0 = 0 , or 0 = −10 ,. . . , or 0 = 10, so is the order of his reserve price. Assume

his corresponding reserve price is ∗, then the probability of 

∗ = ∗ is
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Therefore, according to the results of Proposition 8, we directly derive each seller’s

ex ante expected revenue by auctioning.

Proposition 11 When each seller has asymmetric information about the other sell-

ers’ private values and all buyers take their common sequential equilibrium bidding

strategies, in either the high bid auctions or English auctions, ∀ ∈ {1 2 }, seller
 with ∗ obtains his ex ante expected revenue of
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(31)
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Proposition 11 implies that seller ’s ex ante expected revenue from his auction

explicitly depends on his own private value (or reserve price) and the distributions

of other sellers’ private values (or reserve prices). In essence, each seller’s ex ante

expected revenue is the weighed summation of the expected revenues in  possible

cases in which his reserve price is ranked from the highest to the lowest, respectively.

So for a seller with the lowest private value. or even with relative low one, in the

corresponding complete information case, he is inclined to estimate a relatvely higher

expected revenue, while a relatively lower one for a seller with the highest private

value, or even the relative high one. These ex ante extimations obviously result in

the shrinking of the difference between both, the ex ante expected revenues of the

sellers with the private values in two ends and the difference between each pair of

sellers with adjacent reserve prices on average as well.

5.2.2 Sellers’ Reserve Prices

In such an asymmetric information case, each seller sets his reserve price to maximize

his ex ante total expected return, so his setting is just ex ante optimal. If we require

his equilibrium reserve price is ex post optimal, we have to permit him to have the

right to change his reserve price when he knows the other sellers’ reserve prices at

the beginning of their auctions. Such a requirement will make our analysis quite

complicated, hence we only focus on the ex ante equilibrium. Of course, at most

cases, such an ex ante equilibrium for each seller is suboptimal.

For convenience, we define
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¤¤
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as the probability that the buyer with private value ∗ wins the auction of seller 
whose reserve price satisfies ∗ = ∗ conditional on his loss of previous auctions with
reserve prices lower than ∗, and define
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as the probability that the buyer with private value ∗ = ∗ wins seller ’s auction
with reserve price ∗ conditional on that the goods with reserve prices lower than

∗ have been auctioned out. Meanwhile, when ∗ = ∗, we rewrite 

³©
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´
. Thus, based on (27), a typical seller ’s optimal reserve

price can be designed as follow.

Proposition 12 ∀ ∈ {1 2 }, the optimal reserve price of seller with 0 in
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either high bid auction or English auction satisfies
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(34)

Moreover, it depends on his own private value, the distributions,of the other sellers’

private values, and the numbers of both buyers and sellers.

Obviously, by (34), when all sellers have identical private values, they will design

the same reserve price, otherwise, at least some of them may set different reserve

prices. Furthermore, ∗ is increasing in 0, which is quite intuivtive. Based on the

above analysis about the relationships of their ex ante expected revenues against the

ones in corresponding complete information case, it is reasonable to predict that the

differences of reserve prices between the sellers with the highest and lowest private

values will shrink, as well as the average difference between each pair of adjacent

reserve prices. That is, the lowest reserve price will ascend, the highest will descend,

and all reserve prices become closer to each other on average. Such changes may lead

to the improvement of the total expected gain of each buyer in relative high end, but

deterioration of each buyer in relative low end whose prive value is not lower than

the lowest reserve price in the complete information case, since each buyer will bid

more aggressively for the first auction with lowest reserve price but less aggressively

for the last one with highest reserve price. However, the ex ante total expected return

of each seller relative to that in the complete information case is ambiguous yet.

6 Simulation of Complete Information Cases

For better understanding the results of competitive sellers with different private values

in online auctions, we use a specific numerical simulation to demonstrate each buyer’s

bidding strategy, each seller’s design of reserve price, and the auctioneer and bidder

externalities as the number of corresponding side changes.

Consider a Kingston DataTraveler 101 U-disc with 4GB online auction6. Assume

that a typical buyer’s private value has a uniform distribution on [ ] = [0 100]

RMBs. For convenience of comparision, we treat the one-seller case as the benchmark

6The online fixed price of a Kingston DataTraveler 101 U-disc with 4GB is about in the interval

of  RMBs in China On August, 2009.
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where there are  = 100 buyers. The online auction platform is set to apply high

bid (Dutch) auction format for demonstrating each buyer’s bidding strategy.7 In the

numerical simulation, we compare four cases of one seller, competitive sellers with

buyers’ multiauctioning, heterogeneous reserve prices as well as common collusive one

with complete information. In the last three cases, we set  = 5, and use Genetic

Algorithm to find out the approximate solution of each seller’s optimal reserve price

for the number of potential solutions are too large. Furthermore, we demonstrate the

cross-group externalities on both sides in the buyers’ multiauctioning case.

6.1 Comparison of Cases with Common Reserve Prices

For convenience of comparing the cases of one seller (case I), competitive sellers

with buyers’ multiauctioning (case II) and common collusive reserve price with com-

plete information (case III), we set 0 = 40 RMBs in the first two cases, and set

{50 40 30 20 10} = {40 45 50 55 60} RMBs in the collusion case. Meanwhile, set
buyers’ private values as  = 100×  ∀ ∈ {1 2  100}.
According to Proposition 1-3, Proposition 10 and corresponding proofs, we can

compute and compare each buyer’s bids, expected gain, each seller’s reserve price and

total expected gain in the three cases (see table 2). To avoid the redundant bidding

schedule of each buyer without losing the sense of comparison, we just report each

buyer’s first bid (5 ) in case II and III in the table.
8

In table 2,  and  denote the seller’s total expected return in case I and each

seller’s one in case II and III, respectively;  and 

 denote the corresponding real

return in case I and both case II and III, respectively; while  and  denote each

buyer’s expected gain and real one. For the seller(s), the common reserve price in

case II (70.567 RMBs) is higher than the one in case I (70 RMBs), which shows ∗
is increasing in , and  ≥ − ln [1− −1(∗)]


holds based on Proposition 3.9

Meanwhile, ∗ is higher in collusion case (75.001 RMBs) than the one in case II,
since ∗ is higher than the largest private value among all sellers (60 RMBs) and the
average private value is higher than that in case I and II (40 RMBs) by Proposition

10. These results give us an instruction: More intense competition among sellers,

higher reserve prices may be possible and feasible. Furthermore, the total expected

return of each seller in either case II (44.141 RMBs) or case III (44.141 RMBs) is lower

7In the survey of Lucking-Reiley (2000), there are at least three internet auction sites using Dutch

auction format, including Intermodal Exchange, Klik-Klok Auctions and Bid.com, though there are

much more sites using English ascending-price auction format.
8In both case II and III, the winning buyers when there are 4 sellers to 1 seller available are the

ones with private values from 99 RMBs to 96 RMBs, and corresponding winning bids are 97.654,

96.924, 95.986, 95.000, respectively.
9However, we still have other possible approximate solutions lower than 70 RMBs, e.g. 69.971

RMBs, 69.872 RMBs, and have some higher than 70 but lower than 70.567, e.g. 70.320 RMBs,

70.120 RMBs. Since now    isn’t satisfied, or  is not large enough, so the result may only

have demonstrative meaning, but not the testing power.
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than that in case I (98.020 RMBs) since  ≥ − ln [1− −1(∗)]

by Proposition

3. SInce  =100 is relatively large, then all sellers’ total expected returns are hardly

different though they have different private values by Proposition 2 and 3.

Table 2: Comparison of the three online auction cases

Cases Case I Case II Case III

Seller(s) ∗   ∗  

 ∗  




{95.000,95.986, {95.000,95.986,
 =100 70.000 98.020 99.000 70.567 44.141 96.924,97.654, 75.001 44.141 96.924,97.654,

97.727} 97.727}
Buyers

    5   5  
1 0.000 0.0000 0.000 0.000 0.0000 0.000 0.000 0.0000 0.000

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
69 0.000 0.0000 0.000 0.000 0.0000 0.000 0.000 0.0000 0.000

70 70.000 0.0000 0.000 0.000 0.0000 0.000 0.000 0.0000 0.000

71 70.462 1.0126E-15 0.000 70.685 3.0461E-15 0.000 0.000 0.0000 0.000

72 71.323 5.0872E-15 0.000 71.381 2.3494E-14 0.000 0.000 0.0000 0.000

73 72.281 2.1169E-14 0.000 72.295 1.0393E-13 0.000 0.000 0.0000 0.000

74 73.263 8.3463E-14 0.000 73.267 4.1593E-13 0.000 0.000 0.0000 0.000

75 74.251 3.2040E-13 0.000 74.252 1.6001E-12 0.000 0.000 0.0000 0.000

76 75.240 1.2057E-12 0.000 75.240 6.0270E-12 0.000 75.442 4.4243E-12 0.000

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
95 94.050 5.9205E-03 0.000 94.044 0.0294 0.000 94.044 0.0294 0.000

96 95.040 0.0169 0.000 95.023 0.0829 1.000 95.023 0.0829 1.000

97 96.030 0.0476 0.000 95.981 0.2264 1.014 95.981 0.2264 1.014

98 97.020 0.1326 0.000 96.876 0.5807 1.076 96.876 0.5807 1.076

99 98.010 0.3660 0.000 97.561 1.2961 1.346 97.561 1.2961 1.346

100 99.000 1.0000 1.000 97.727 2.2727 2.273 97.727 2.2727 2.273

For buyers, interestingly, the first bids of some buyers with lower private values,

namely, from 71 RMBs to 75 RMBs, are smaller when there is only one seller than

the ones in case II, while the bids of some higher-private-value buyers with from 77

RMBs to 100 RMBs are bigger in case I than the ones in case II. Such results may

be important to reveal the principle that the probability enhancement of winning an

auctioned good for more potential auctions may not surely induce bidding buyers’

lower bids and higher real gains. On the one hand, some higher-private-value buyers

may improve their real gain by lowerly bidding; but on the other hand, some buyers

with lower private values may suffer the loss of their real gains. Such results imply

that more winning opportunities may make buyers with lower private values feel a

little bit higher bid can lead to larger increment of marginal winning probability, so

increasing their bids is worthwhile; while such situation may let buyers in the other
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end perceive that a litte bit lower bid can only entail less decrement of marginal

winning probability, thus decreasing their bids is optimal. However, for each buyer

who can submit a bid, his expected gain is strictly increasing with more sellers in

both case II and III, which looks in contradiction with Proposition 2. But given

∗ ≤ 0 is only a relative sufficient condition, ∗  0 may also generate

the similar results.

6.2 Comparison of Cases with Noncollusion and Collusion

In the heterogeneous reserve prices case with complete information, namely, the non-

collusion case, each buyer may possibly bid five times in sequence for potential five

auctions. Based on Proposition 9, we can directly calculate each seller’s optimal

reserve price. Meanwhile, based on Proposition 7, we can also obtain each buyer’s

bidding strategy and calculate his five sequential bids. It’s meaningful to reveal the

differencethe of between optimal reserve price in collusion case and the ones in non-

collusion case, and to compare the total expected return of each seller as well as the

expected gain of each buyer in both cases. Furthermore, we may also demonstrate

whether our Conjecture 1 may be correct or not through comparing two settings:

 =100 and  =120.

Table 3 demonstrates the results of both sides with  =100 and  =120 in non-

collusion case. When  =100, the lowest reserve price is 70 RMBs and the highest

one 78.947 RMBs, which makes the optimal reserve price in collusion case lie in the

point between these two ones. Interestingly, each seller’s expected total return now

is higher to a great extent, say, the lowest is 50.1 RMBs and the highest is 72 RMBs,

than that, say, 44.141 RMBs, in case III, so is the sum of all sellers’ total expected

returns.10 Such comparison may let someone argue that in the simulation settings,

noncollusion is more reasonable to be an equilibrium rather than collusion. This ar-

gument may be right yet, but when comparing each seller’s real total return in both

cases, we find out that the real total returns of buyers with private values of 55 RMBs

and 60 RMBs are higher in collusion case than the ones in noncollusion case, though

the ones of the other converse. Additionally, their real total returns are quite close

in both cases. Moreover, since we require    =100 is not high enough, which

makes our data possibly fail to reveal the true results. Therefore, either collusion or

noncollusion may be an equilibrium, and as a result, both Proposition 9 and 10 are

still meaningful. Another interesting finding is that though the seller with the lowest

reserve price can have the highest bid in the five auctions, his expected total return

may not be highest, namely, 5 =70 RMBs while 4 =72 RMBs. Obviously, the

10In  100 case, the program-running results of
©

ª1
=3

are 14.946, 7.8087, 4.8196, respectively.

However, such results are pseudo ones with the setting of  100 and 5, for  is not large enough

relative to  since we require    throughout our analysis. In our trials, when  ≥ by

fixing , the results of total expected returns of all sellers are consistent with our theory. Hence,

for convenience to compare, we take the adjusted but reasonalbe results: 50.100, 55.100, 60.100.
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ranks of all sellers may depend on the details of all buyers’ private values, all buyer’s

private values as well as  and . Hence, that the reason why we don’t propose such

ranks in our main conclusions.

Table 3: The behaviors of both sides in noncollusion case
Cases  =100  =120

Sellers 5∗ 4∗ 3∗ 2∗ 1∗ {}1=5 

 Sellers 5∗ 4∗ 3∗ 2∗ 1∗

70.000 72.000 74.249 76.575 78.947 {70.000,72.000, {97.680,97.627, 69.998 72.079 74.372 76.732 79.122

50.100,55.100, 96.911,95.981,

Buyers 60.100} 95.000} Buyers

 5 4 3 2 1    5 4 3 2 1
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.83 0.000 0.000 0.000 0.000 0.000

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
69 0.000 0.000 0.000 0.000 0.000 0.000 0.000 69.17 0.000 0.000 0.000 0.000 0.000

70 70.000 0.000 0.000 0.000 0.000 0.000 0.000 70.00 70.000 0.000 0.000 0.000 0.000

71 71.000 0.000 0.000 0.000 0.000 0.000 0.000 70.83 70.830 0.000 0.000 0.000 0.000

72 71.510 72.000 0.000 0.000 0.000 7.4026E-15 0.000 71.67 71.660 0.000 0.000 0.000 0.000

73 72.358 72.467 0.000 0.000 0.000 5.1733E-14 0.000 72.50 71.766 70.858 0.000 0.000 0.000

74 73.280 73.307 0.000 0.000 0.000 2.2028E-13 0.000 73.33 72.741 71.73 0.000 0.000 0.000

75 74.374 74.411 74.523 0.000 0.000 9.5248E-13 0.000 74.17 73.745 73.530 0.000 0.000 0.000

76 75.267 75.275 75.304 0.000 0.000 4.0266E-12 0.000 75.00 74.399 73.803 73.989 0.000 0.000

77 76.387 76.417 76.482 76.671 0.000 1.5557E-11 0.000 75.83 75.483 75.316 75.373 0.000 0.000

78 77.254 77.261 77.278 77.330 0.000 6.5262E-11 0.000 76.67 76.102 76.055 76.068 0.000 0.000

79 78.434 78.464 78.517 78.629 78.948 2.1316E-10 0.000 77.50 76.900 76.915 76.947 77.038 0.000

80 79.252 79.259 79.274 79.305 79.400 9.2974E-10 0.000 78.33 77.686 77.690 77.697 77.722 0.000

81 80.192 80.192 80.194 80.201 80.228 3.2714E-09 0.000 79.17 78.690 78.716 78.760 78.852 79.123

82 81.166 81.164 81.163 81.163 81.168 1.0822E-08 0.000 80.00 79.378 79.384 79.396 79.422 79.502

83 82.152 82.149 82.146 82.143 82.142 3.4831E-08 0.000 80.83 80.163 80.164 80.166 80.172 80.195

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
95 94.023 94.020 94.017 94.014 94.010 0.0149 0.000 95.83 95.015 95.013 95.011 95.009 95.007

96 95.001 95.000 95.000 95.000 95.000 0.0409 1.000 96.67 95.831 95.832 95.832 95.833 95.833

97 95.956 95.964 95.972 95.981 95.990 0.1124 1.019 97.50 96.629 96.636 96.644 96.652 96.659

98 96.846 96.878 96.911 96.945 96.979 0.3138 1.089 98.33 97.373 97.400 97.428 97.457 97.486

99 97.520 97.627 97.738 97.853 97.969 0.9201 1.373 99.17 97.937 98.027 98.120 98.216 98.312

100 97.680 97.871 98.115 98.448 98.958 2.3197 2.320 100.00 98.072 98.233 98.437 98.714 99.138

For buyers, each bidder improves his expected gain in collusion case relative to

that in noncollusion case, except the buyer with the highest private value, and so

does the sum of all buyers’ expected gains. Remind that the sum of all sellers’ total

expected returns is lower in collusion case rather than in noncollusion one. Combining

these results, we suspect that the total surplus of all buyers, even the surplus of each
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of them, may not less, even higher when all sellers collude than that when they don’t

collude with each other., though such conclusion is hard to theoretically discuss.

Moreover, by our Conjecture 1, when  is large enough, each buyer at the lowest end

who can bid may take the decreasing bidding strategy and each one at the highest

end converses. However, when  =100, data in table 3 tell us that each buyer with

 ∈ {72 73  81}, who offers bids in at least two auctions, increasingly bids from
the auction of the seller with 5∗ =70 RMBs to that of the seller with 1∗ =78.947
RMBs, although so does each buyer with  ≥97 RMBs. By contrast, when  =120,

each buyer with  ∈ {7250 7333 7417} takes the decreasing bidding strategy, while
the one with  ≥ 9667 RMBs takes the reverse strategy. In Addition, there are only
not more than 3 transitional buyers who have relatively intermediate private values

to bid without monotonicity, and then the higher buyers bid ascendingly again, and

then again, we meet one or several transitional buyers, and then the higher buyers

bid decreasingly, and after the last one or several transitional ones occur, in the end,

the rest of buyers with highest private values submit ascending bids. Hence, based

on such complex bidding, we guess our conjecture may be correct to a great extent

when  is large enough relative to .

6.3 The Illustration of Cross-Group Externalities

Our another important focus lies in the illustration of bidder and auctioneer external-

ities in case II. According to Theorem 1, in our settings, the auctioneer externalities

are positive if  ≤ − ln [1−  −1(∗)]

, and the bidder externalities are positive

if (∗) ≥ − ln (∗). Since each condition is quite strict sufficient one, and
as a whole, the externalities on both sides are very intuitive and obvious, we ignore

these constraints when discussing. For demonstrating bidder externalities, we range

the number of buyers from 50 to 120; while range the number of sellers from 5 to 20

for auctioneer externalities (see table 4).

Checking out the bidder externalities, it is found that as the number of buyers

ascends, each seller’s total expected return is increasing, but the speed of such incre-

ment decreases. It’s natural for the marginal return induced by identical increment of

the number of buyers diminishes as  become larger. Thus, to some degree, the data

gives us simulative support that the bidder externalities can be positive. By parallel

observing, we find that the expected gain of each buyer who bids improves as the

number of sellers becomes bigger though  is not small enough relative to . This

indicates that the auctioneer externalities can be also positive for each bidding buyer.

Additionally, although the reserve price of each seller is increasing as  ascends, but

all bidding buyers’ expected gain still enhance for the marginal increment of winning

probability accelerates to a great extent.

These results reveal that the positivity of both auctioneer and bidder externalities

may hold in looser conditions than that in Theorem 1, even when  is not high enough

relative to. The ubiquity of positive auctioneer and bidder exernalities may provide
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a simulative evidence for the booming of online auctions.

Table 4: The illustration of cross-group externalities

Bidder  =50  =60  =70  =80  =90  =100  =110  =120

externalities  =5


42.657 43.147 43.500 43.766 43.974 44.141 44.278 44.393

Auctioneer  =5  =6  =7  =8  =9  =10  =15  =20

externalities  =100

∗ 70.567 70.712 70.716 70.780 70.781 70.782 70.783 70.784

Buyers()        
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
70 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

71 2.5090E-15 2.6512E-15 2.8674E-15 3.0461E-15 3.5849E-15 3.9768E-15 5.3773E-15 7.1699E-15

72 2.3494E-14 2.7106E-14 3.0965E-14 3.5388E-14 4.0658E-14 4.4237E-14 6.6355E-14 8.8474E-14

73 1.0393E-13 1.2381E-13 1.4324E-13 1.6371E-13 1.8571E-13 2.0464E-13 3.0695E-13 4.0927E-13

74 4.1593E-13 4.9716E-13 5.7969E-13 6.6251E-13 7.4573E-13 8.2814E-13 1.2422E-12 1.6563E-12

75 1.6001E-12 1.9188E-12 2.2382E-12 2.5579E-12 2.8782E-12 3.1974E-12 4.7961E-12 6.3948E-12

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
96 0.0829 0.0990 0.1150 0.1309 0.1466 0.1622 0.2382 0.3110

97 0.2264 0.2685 0.3096 0.3497 0.3889 0.4271 0.6060 0.7661

98 0.5807 0.6756 0.7648 0.8488 0.9280 1.0028 1.3227 1.5743

99 1.2961 1.4499 1.5848 1.7045 1.8119 1.9089 2.2885 2.5610

100 2.2727 2.4370 2.5776 2.7004 2.8095 2.9076 3.2884 3.5610

7 Conclusion and Open Questions

The purpose of this paper is to capture the important features of online auctions

other than traditional auctions, namely, competition among sellers and cross-group

externalities, and explore corresponding effects on buyers’ equilibrium bidding strate-

gies, setting of sellers’ optimal reserve prices, and the expected returns of both sides.

Since we focus on the SIPV model, our paper can be viewed as a competitive-seller

extension of Myerson (1981), Riley and Samuelson (1981), and fits for two main auc-

tion formats which have been discussed in Riley and Samuelson (1981), including

high bid (Dutch) auction and English auction.

We investigate two categories of typical online auction cases: sellers with identical

private values and with different ones. In the former category, when buyers can

multiauction, that is, submit bids in all auctions if possible, all sellers set the common

optimal reserve price. Surprisingly, such common reserve price is decreasing as the

number of buyers  becomes larger, and may ascend as the number of sellers 
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increases if the bidding likelihood ratio  of the buyer with private value equal

to the reserve price is high enough, though vice versa. When  is high enough,

each seller’s total expected return is strictly decreasing as sellers’ competition turns

to be more intense. Moreover, some part of buyers in the lower end may bid more

aggressively than they do in one-seller case, and each bidding buyer’s expected gain

is strictly increasing in  if  is high enough, but may not be improved without

any constraint. By contrast, when all buyers can bid in only one auction, we have

the less buyers version for each seller of one-seller auction. So naturally, the common

equilibrium reserve price is the same as the one with one seller, but each seller’s total

expected return is decreasing in  only when the winning probability of a buyer

with private value equal to the reserve price is large enough by Proposition 5, and is

strictly increasing in  with more strict constraints.

Meanwhile, there do endogenously exist cross-group externalities in online auc-

tions according to Theorem 1 and 2, which is quite important and distinguishes from

traditional auctions. In bidding by multiauctioning and single-auctioning cases, both

the auctioneer and bidder externalities can be positive if some sufficient conditions,

may be too strict, are satisfied, which provides the theoretical evidence for the rapid

development of online auctions in the last decade.

In the latter category, when the information of the sellers’ private values is sym-

metric to all of them, there may be two reasonable equilibria: noncollusion and col-

lusion. In noncollusion case, the sellers design different reserve prices, namely, larger

is a seller’s private value, higher is his reserve price. Then for each potential bidding

buyer, he takes sequential bidding strategy which may be descending from the first

auction to the last one when he has quite low private value, while ascending when

he has quite high private value by Conjecture 1. Hence, the equilibrium in this case

is a sequential one. However, in collusion case, all sellers set a common but higher

reserve price just like bidding by multiauctioning case in the first category, and so do

the buyers. When information is asymmetric, the design of reserve price of each seller

is an complex extension of that in symmetric information, and the reserve prices are

surely different again. Because of this, the bidding strategy for each buyer is the same

as that in noncollusion case.

Furthermore, by comparing almost all of above cases with complete information,

our simple simulation demonstrate and support our main conclusions. Most impor-

tantly, it demonstrates whether the auctioneer and bidder externalities are positive

and how they work. Additionally, it also helps to preliminarily test our conjecture

about the buyers’ bidding strategies in noncollusion case, and give a simulative sup-

port.

Since the online auctions are much more complicated than traditional ones, our

model is too restrictive to reflect all of the uique but important features of online

auctions though conveniently tractable. Therefore, we still have quite a lot open

questions to study, including the follows.
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7.1 Reauctioning

In fact, empirical evidences indicate that many sellers reauction their goods by inter-

net auction houses or platforms, say, eBay, Overstock, Ubid, and may do so multiple

times. When there is only one seller, resale situation has been discussed by a series of

literatures without considering auction house (McAfee and Vincent, 1997; Horstmann

and LaCasse, 1997; Zheng, 2002), and with considering internet auction house (Ma-

tros, Zapechelnyuk, 2008a; Matros, Zapechelnyuk, 2008b).

In our paper, we just capture each seller’s one-shot auction case, which is restric-

tive to some extent. When we permit each seller to reauction his good, the design of

reserve price for each seller turns to be a recursive optimality problem in which each

seller expects a reauction probability in every round. However, in the case that the

sellers have heterogenous private values, the analysis will become too much compli-

cated. Hence, our future work may focus on the case that all sellers have homogenous

private values, which does make sense though is still somewhat restrictive.

7.2 Effects of Online Auction Platform

If we investigate the online auctions from the perspective of two-sided market, the

behaviors of online auction platform may be crucial for the result of each online

auction and the equilibrium behaviors of both buyers and sellers. Intuitively, what

the online auction platform charges to online auction participants will definitely affect

the transaction prices as well as the numbers of both sides, and subseqently affect the

benefits of both sides by cross-group externalities and the change of the number of

potential trade opportunities. Therefore, a general model describing online auctions

should incorporate the behavior of online auction platform and consider the effects

of the fees it charges.

In essence, Matros and Zapechelnyuk (2008a, 2008b) have discussed the optimal

fees of online mediator in the one-seller case without considering the cross-group

externalities. By comparison with the literature of two-sided market, the listing fee

in their papers may be viewed as the membership fee, and the closing fee as the

usage fee. They conclude that the optimal listing fee is zero. In terms of two-sded

market, the sellermay only have the usage externalities if such externalities exist in

their papers.11 However, the buyers can’t enjoy the autioneer externalities and as a

result, the auction mediator can’t endogeoously determine the number of each side by

charging fees, which makes their papers restrictive to capture the two-sided market

feature of online auction. Hence, the problem of desining the optimal fees for an online

auction when there are competitive sellers does be a challenge for further study.

11Rochet and Tirole (2003) discusses the pricing problem of competitive platforms when only

considering the usage externalities.
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7.3 Correlation of Bidders’ Valuations

Whether the affiliation effects happen may depend on the category of goods to a great

extent. One the one hand, for the unstandard goods which can be characterized by

value uncertainty, unfamiliarity, too much high value, or with historical meaning, the

private values of buyers may be much harder affiliated, such as antiques, souvenirs,

and goods with folk features. On the other hand, for standard goods which can

be captured by value certainty, familiarity, not too much high value or necessity,

the affiliation effects may happen much easily, e.g., fast moving consumer goods,

electronical goods (TV, refrigerator, Telephone, PC), and digital goods (Softwares,

Flash discs, MP3 and MP4 players, ipod). Such comparison is quite intuitive, which

is consistent with people’s consumption experiences, and can explain why traditional

auctions almost only focus on unstandard goods. In the online auctions, in many

cases, the bidders’ valuations are affiliated since many standard goods are auctioned.

For instance, on eBay, the listing goods include the following standard ones: computer

softvare, electronics, toys and trading cards, even the used equipment.

In the literatures of traditional auctions, the "Affiliated Private Value" Models

were proposed to investigate the equilibrium behaviors of both buyers and selers in

such cases (Milgrom and Weber, 1982; Pinkse and Tan, 2005). However, such models

involve only one seller, which can’t reflect the important teatures of online auctions.

For both theoretical and practical needs, we should extend these models to multiple

sellers.

7.4 Collusion among Sellers

In both traditional and online auctions, especially the former, the collusion among

buyers is not a rare phenomenon. The three main online auction platforms eBay, Ya-

hoo, and Amazon and other famous ones ususally apply English auction format, which

makes the buyers reatively easily to achieve collusion from the empirical evidences by

jump bidding (Sherstyuk, 2002; Brusco and Lopomo, 2002; Kwasnica and Sherstyuk,

2007), sniping (Ockenfels and Roth, 2002, 2006; Wintr, 2008), and withholding bid.

However, the above collusion strategies can be seldomly effective and feasible

in online auction practice sicne there may be thousands of buyers who come from

different provinces or states, even different countries, and in many cases, they are

anonymous. For instance, Overstock has 7.6 millions U.S. monthly users on June

30th and 14.6 millions, the maximal number, on January 2nd, 2009. On the other

side, the number of the sellers for the similar goods may be relatively small, ranging

from about tens to hundreds. For example, on April, 2009, there are only about

30-50 sellers auctioning American Eagle Silver Dollar on Overstock. So the sellers

may be much more easily and do have incentives to form collusion though they may

have different private values. Proposition 10 also indicates that such collusion may be

an equilibirum for each seller. Therefore, investigating collusion among sellers other

than buyers in online auctions should be more meaningful.
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7.5 Learning of Buyers

Another important question is the learning effects of both buyers and sellers, espe-

cially the former, in online auctions. For buyers, there are three factors inducing such

question: duration, reauction and competition among sellers.

These three factors may commonly make buyers learn in the process of an online

auction if allowing buyers’ multiauctioning. When each seller’s auction last for a

period of time, say, 7 days, for the case with heterogeneous reserve prices, the buy-

ers may learn about the distribution of the other bidders’ private values from the

previous auction(s). By some information updating rule, e.g., Bayesian rule, buyers

can reschedule their sequential bidding strategies with updated information to the

better ones. Even in the single-auctioning case, the last two factors may contribute

to each buyer’s learning similarly. Such learning may influence the behaviors of both

sides, even the design of both auction formats and charging mechanism of the online

auction platform, which may be another important feature of online auctions.
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Appendix

Proof of Proposition 1. When there are  sellers, for buyer , probability that

he wins with his report  is

1− £1−  −1()
¤



Then his expected gain is

( ) = 
£
1− £1−  −1()

¤¤− () (A1)

where () is his expected payment. Based on optimal mechanism design, buyer ’s

optimal report must be to select  =  with bid (), which must satisfy the FOC

of ( ):

 ( )



¯̄̄̄
=

= 

£
1− [1− −1()]

¤


−  0
 () = 0

Hence, with the buyer’s private value ∗, we have the boundary condition:

∗
£
1− £1− −1(∗)

¤¤− ∗(∗) = 0 (A2)

Given  ≥ ∗, buyer ’s  must satisfy the following differential equation



£
1− [1− −1()]

¤


=  0
 () ∀ ≥ ∗ (A3)

Solving (A3) by using the boundary condition (A2), we have buyer ’s expected

payment as

() = 
£
1− £1− −1()

¤¤− Z 

∗

£
1− £1−  −1()

¤¤
 ∀ ≥ ∗ (A4)

Since each seller knows  , his expected revenue is

 =

Z 

∗
()()

=

Z 

∗
[ () +  ()− 1] £1− £1− −1()

¤¤


Since the equilibrium is symmetric for all buyers, the sum of all seller’s expected

revenue is , and each seller’s is 

.

Proof of Proposition 2 . In high bid auction, for buyer , when there are 

auctions available, his expected payment is



 () = ()

h
1− £1−  −+−1()

¤i

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Then by using (A4), we can directly obtain buyer ’s equilibrium bidding strategy:

() =  −
R 
∗

h
1− [1− −+−1()]

i


1− [1− −+−1()]


∀ ∈ {1 2 }

for the boundary conditions

∗
h
1− £1− −+−1(∗)

¤i−  
∗ (∗) = 0 ∀ ∈ {1 2 }

are still satisfied at  = ∗. Moreover, by (A1), buyer ’s expected gain is

( ) =

Z 

∗

£
1− £1− −1()

¤¤


Thus differentiating ( ) with respect to , we have

( )


= − £1− £1− −1(∗)

¤¤ ∗

−
Z 

∗

£
1−  −1()

¤
ln
£
1− −1()

¤
  0

if ∗

≤ 0, which indicates that ( ) is strictly increasing in .

Proof of Proposition 3. For each seller, the probability that he retains his good

after the auction is (∗). Then by Proposition 1, his total expected return is

(0 ∗) = 0
(∗) +





Z 

∗
[ () +  ()− 1] £1− £1− −1()

¤¤
 (A5)

Differentiating (A5) with respect to ∗ and by FOC, we have

∗ − 1−  (∗)
(∗)

=
−1(∗)

1− [1− −1(∗)]
0 ≡  () (A6)

which describes the optimal reserve price. Thus,

 ()


=

−1(∗)
£
1− [1− ln [1−  −1(∗)]] [1− −1(∗)]

¤
[1− [1−  −1(∗)]


]
2

0 ≤ 0

If

 ≡ 1− [1− −1(∗)]


[1−  −1(∗)]
 ≤ − ln £1− −1(∗)

¤


Then by Myerson’s regular condition, ∗ − 1− (∗)
(∗)

is strictly increasing, thus ∗ is
decreasing in . Similarly, if

 ≥ − ln £1− −1(∗)
¤



then is ∗ increasing in .
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Furthermore, differentiating (A5) with respect to  yields

(0 ∗)


= 0
−1(∗)(∗)

∗

− 

2

Z 

∗
[ () +  ()− 1] £1− £1−  −1()

¤¤


− 


(∗)

∙
∗ − 1−  (∗)

(∗)

¸ £
1− £1− −1(∗)

¤¤ ∗


− 



Z 

∗
[ () +  ()− 1] £1−  −1()

¤
ln
£
1−  −1()

¤


= − 



Z 

∗
[ () +  ()− 1]

"
1−[1−−1()]




+

[1− −1()] ln [1−  −1()]

#


since ∗ satisfies (A6). Define

e() ≡ 1− [1− −1()]


+
£
1− −1()

¤
ln
£
1− −1()

¤


Then

 e()


= −(−1) £1− −1()
¤−1

 −2()() ln
£
1− −1()

¤ ≥ 0 ∀ ∈ [∗ ] 
Thus, if e(∗) ≥ 0, by Myerson’s regular condition, (0∗)


 0.

Proof of Corollary 1. Based on (A6), we define e () ≡  (). Thus, we have

e ()


=
 −1(∗) [ln (∗)]

h
1−

h
[1−  −1(∗)]


+ −1(∗) [1−  −1(∗)]

−1
ii

[1− [1−  −1(∗)]

]
2

0

Since
P

=0

 [

−1(∗)]

[1−  −1(∗)]

−
= 1 for a buyer whose private value is ∗

and ∗()  , it can easily yield that [1−  −1(∗)]

+−1(∗) [1− −1(∗)]

−1


1. Therefore,
  ()

≤ 0. Then by Myerson’s regular condition, ∗ is decreasing in ,

and is strictly decreasing if ∗  .

Furthermore, by (A5), we have

(0 ∗)


= (∗)

∙
0

(∗) ln (∗)− 



∙
∗ − 1−  (∗)

(∗)

¸ £
1− £1−  −1(∗)

¤¤¸ ∗


+
1



Z 

∗
[ () +  ()− 1]

∙
1− [1− −1()]+

 [1− −1()]−1  −1() ln ()

¸


Then by definition of (),

() =
1− [1−  −1()]

 [1−  −1()]−1 −1()
∀ ∈ [∗ ] 
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Differentiating () with respect to  yields

()


=
(− 1)()−2() [1− −1()]−2

£
 −1() + [1− −1()] − 1¤


£
[1− −1()]−1  −1()

¤2 

For convenience, defineb() ≡  −1() +
£
1−  −1()

¤ − 1
Then we can derive

 b()


= (− 1)() −2()
h
1− £1− −1()

¤−1i
 0

since  ≥ 2 and  ≥ ∗  . As a result, b()  0 ∀ ∈ [∗ ] for b() = 0.

Hence, we obtain
()


 0. Meanwhile, − ln () is decreasing in . Therefore,

(0 ∗) is strictly increasing in  if (∗) ≥ − ln(∗) since ∗

≤ 0.

Proof of Proposition 5. By parallel analysis with the case with multiauctioning,

each buyer’s expected gain in equilibrium is

( ) =

Z 

∗
 −1()

Differentiating ( ) with respect to  yields

( )


= − 

2

Z 

∗
−1() ln ()  0

Moreover, based on Proposition 4, each seller’s total expected return is

(0 ∗) = 0
(∗) +





Z 

∗
[ () +  ()− 1] −1()

Thus, we have

(0 ∗)


= −0 

2
(∗) ln (∗)

− 

2

Z 

∗
[ () +  ()− 1]

h
1 +




ln ()

i
 −1()

which is positive if 1 + ln (∗) ≥ 0. Meanwhile, we also have
(0 ∗)


=

0


 (∗) ln (∗) +

1



Z 

∗
[ () +  ()− 1]−1()

+


2

Z 

∗
[ () +  ()− 1]−1() ln ()
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Then based on (8), given 1 + ln (∗)  0, substituting 0 by ∗ − 1− (∗)
(∗)

and

rearranging the above derivative yields

(0 ∗)


=
1



⎡⎣ R ∗ h∗ − 1− (∗)
(∗)

i
ln (∗)
1− (∗)

(∗) () +R 
∗

h
 − 1− ()

()

i
1+ln()

 ()
 () () 

⎤⎦


1



∙Z 

∗

∙
∗ − 1−  (∗)

(∗)

¸ ∙
ln (∗)
1−  (∗)

+
1 + ln(∗)

 (∗)

¸
(∗) () 

¸

since Myerson’s regular condition holds and
[1+ln()]()

 ()
is strictly increasing

in . Hence,
ln (∗)
1− (∗) +

1+ln(∗)
 (∗)

≥ 0 if

1−  (∗)
 (∗)

≥ − ln (∗)
1 + ln(∗)



which results in
(0∗)


 0.

Proof of Proposition 9. Based on (27), the FOC condition of 
³


0;
©
∗
ª
=

´
with respect to ∗ ∀ ∈ {1 2 } can be yielded as


³


0;
©
∗
ª
=

´



∗

= (−+ )

0

−+−1(∗)(

∗)Π

−−1
=0

£
1−  −(−∗ )

¤
+

(−+ )

" R 


∗

£
Π
−
=1

£
1−  −()

¤¤
−+−1(∗) () 

−∗ −+−1(∗)(

∗)Π

−
=1

£
1− −(∗)

¤ #
= 0

Hence, we have

∗ = 

0

Π
−−1
=0

£
1−  −(−∗ )

¤
Π
−
=1

£
1− −(∗)

¤ +

R 


∗

£
Π
−
=1

£
1− −()

¤¤
()£

Π
−
=1

£
1−  −(∗)

¤¤
(


∗)



which is dependent of the number of all buyers and
©
∗
ª+1
=

.

Proof of Proposition 10. Since we don’t permit sellers to communicate with each

other before they set their reserve prices, in terms of equilibrium refinement, there are

two most possible equilibria: all sellers fully uncooperate and fully collude, though

there may be other possible equilibria that require quite complex conditions.

Our proof focuses on the idea that given ∗ ≥ 01  02    0, if each seller

doesn’t have the incentive to deviate from the noncooperation result to the collusion

result, then the

former does be an equilibrium. We consider the proximate case that under the

result with different reserve prices, each seller has the same number of buyers, i.e., 
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buyers. Thus, based on (27), we obtain a typical seller ’s total expected return of


³


0;
©
∗
ª
=

´
= 


0

£
1−Π

−
=0

£
1− (−∗ )

¤¤
+ (A7)



Z 



∗

£
Π
−
=1 [1− ()]

¤ ∙
−1()−

Z 



∗
 −1()

¸
 () 

Meanwhile, by (A5), a typical seller’s total expected return with ∗ is


¡


0 


∗
¢
= 


0

(∗ ) + 

Z 

∗

[ () +  ()− 1]
£
1− [1− −1()]

¤


 (A8)

For convenient comparison, for seller with ∗ , we have

 (0 ; 

∗ ) = 0 

(∗ ) + 

Z 

∗

∙
−1()−

Z 

∗

−1()

¸
 () (A9)

= 0 
(∗ ) + 

Z 

∗

[ () +  ()− 1]−1()

For the same seller with 0 , when ∗ = ∗ and  = 1, 
¡
0 ; 


∗
¢
= (0 ; 


∗ ).

Thus, if  1, 
¡
0 ; 


∗
¢ ≤  (0 ; 


∗ ) since  (


0 ; 


∗) is maximized at 


∗ = ∗ .

Moreover, by Proposition 3, if  ≥ − ln £1− −1(∗ )
¤
, 

¡
0 ; 


∗
¢
is strictly

decreasing in . Therefore, 
¡
0 ; 


∗
¢
  (0 ; 


∗ ) holds, as a result, seller 

would not deviate from ∗ . However, if 

  − ln £1−  −1(∗ )

¤
, 

¡
0 ; 


∗
¢

may not be decreasing in , so 
¡
0 ; 


∗
¢ ≥  (0 ; 


∗ ) may hold. Furthermore,

by (A7), (A8) and (A9), if   − ln [1− −1(∗)]

, we have

(

0 


∗) = 


0

(∗) + 

Z 



∗
[ () +  ()− 1]

£
1− [1− −1()]

¤




 
³


0;
©
∗
ª
=

´
= 


0

(∗) + 

Z 



∗

∙
 −1()−

Z 



∗
−1()

¸
 () 

However, 1−Π
−
=0

£
1− (−∗ )

¤ ≥ (∗) may hold if  is large enough. Mean-

while,



Z 



∗

£
Π
−
=1 [1−  ()]

¤ ∙
−1()−

Z 



∗
−1()

¸
 () 

≥ 

Z 



∗
[ () +  ()− 1]

£
1− [1− −1()]

¤




may hold if  is large enough and   , which results in(

0 


∗)  

³


0;
©
∗
ª
=

´
.

Finally, Assume that ∗ is the optimal reserve price when all sellers’ private val-
ues are 0, we can directly obtain 

¡


0 


∗
¢ ≤ 

¡


0 


∗
¢
. Based on the above
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analysis, when   − ln £1− −1(∗ )
¤
,   , and  is large enough,

(

0 


∗ ) ≤ 

³


0;
©
∗
ª
=

´
may hold. Since 

¡


0 


∗
¢ ≤ 

¡


0 


∗
¢
by the

definition of ∗ , (

0 


∗ ) ≤ 

³


0;
©
∗
ª
=

´
may also hold. By our basic as-

sumption,   , hence −+ − 1 ≈ −+  ≈ , which results in that seller

 may not deviate from ∗ ∀ ∈ {1 2 − 1}.
By parallel analysis, all sellers may not deviate from the collusion result since it

has the largest joint profit.

For the setting of common optimal reserve price, by the method in the proof of

Proposition 3, we can similarly obtain ∗ and
∗


 0.

Proof of Proposition 12. By (27) and (30), ∀ ∈ {1 2 }, seller ’s ex ante
total expected return can be expressed by

−∗
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
∗ 

−
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1X
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

By FOC condition of −∗
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i
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Hence, we can directly derive the seller ’s optimal reserve price ∗ as in (34).
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