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Abstract 

Moran’s I or Cliff-Ord test statistic has been widely used for diagnostic testing of 

spatial correlation in a linear regression model with or without spatial autoregressive lags. 

The latter simple model can be easily estimated with OLS, while the former spatial lag 

model relies on maximum likelihood or the instrumental variables method. Specification 

testing for spatial autocorrelation is typically performed with the asymptotic distribution 

of Moran’s I test statistic, which depends on the normality assumption of the model. For 

many real world applications, the asymptotic theory of the Moran test may not be 

applicable because the classical normality assumption is rarely satisfied. In this paper, we 

apply residual-based wild bootstrap methods for hypothesis testing of spatial 

autocorrelation in a linear regression model. For specification tests of a spatial 

autoregressive linear regression model, our simulation and bootstrap computations are 

presented with the consistent instrumental variables or 2SLS estimation method. Based 

on Moran’s I test statistic, the empirical size and power of bootstrap and asymptotic tests 

for spatial correlation are evaluated and compared. Under the normality assumption of 

the model, the performance of the bootstrap test is equivalent to or better than that of the 

asymptotic test. For more realistic heterogeneous non-normal models, the applicability of 

asymptotic tests is questionable. Bootstrap tests have shown superiority in smaller size 

distortion and higher power when compared to  asymptotic counterparts, especially for 

cases with a small sample and dense spatial contiguity. Our Monte Carlo experiments 

indicate that based on Moran’s I test statistic, the bootstrap method is an effective 

alternative to the theoretical asymptotic approach when the classical normality 

assumption is not warranted. 
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Properties of Bootstrap Moran’s I for Diagnostic Testing a 

Spatial Autoregressive Linear Regression Model 

 

 

1. Introduction 

Spatial econometrics is a specialized subfield of econometrics that studies spatial 

characteristics and spatial interaction of cross section and panel data. The characteristics 

of spatial heterogeneity and spatial autocorrelation are the main features of the spatial 

data. Theoretical and applied spatial econometrics put forth the analysis of spatial 

interaction across heterogeneous and dependent data observations. A popular model of 

spatial interactions was developed by Cliff and Ord (1973, 1981), in which spatial lags 

are incorporated in the regressand, regressors, and disturbance terms of the linear 

regression equation. Hypothesis testing and estimation of the Cliff-Ord type models have 

been developed and applied in economics, regional science and geography (see Anselin 

(1988), Anselin and Rey (1991), Anselin and Florax (1995), Anselin, Bera, Florax, and 

Yoon (1996), among others). More recent contributions of spatial econometric analysis 

include Anselin and Kelejian (1997), Kelejian and Prucha (1998, 1999, 2001, 2009), Lee 

(2003, 2004, 2007), and many others.  

In spatial data analysis, hypothesis testing for spatial correlation is a common 

practice for the identification and estimation of a spatial econometric model. Moran’s I or 

Cliff-Ord test statistic has been widely used for diagnostic testing of spatial correlation in 

a linear regression model with or without autoregressive spatial lags. The Moran test for 

the latter simple model is based on OLS residuals of a linear regression model and can be 

easily computed
1
. Due to the presence of a spatial lagged regressand, the OLS estimator 

is no longer valid for a spatial autoregressive model, relying instead on maximum 

likelihood (ML) or the instrumental variables 2SLS method. Therefore, for hypothesis 

                                                 

1
 Although Moran’s I test statistic is a simple and popular test for spatial dependence, it does not 

distinguish the spatial correlation in the variable or in the error. LM test statistics for spatial lag and for 

spatial error supplement the Moran’s I statistic for specification test and model validation (see Anselin, 

Bera, Florax, and Yong (1996) for more details).  
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testing of spatial dependence in a spatial autoregressive model, the relevant test statistics 

must be based on the regression residuals of the consistent ML or 2SLS estimator (see 

Anselin and Kelejian (1997), Kelejian and Prucha (2001)). This paper focuses on 

diagnostic testing of spatial correlation in a spatial autoregressive lag model (or “SAR 

model” hereafter) using Moran’s I statistic based on 2SLS regression residuals.  

The available literature concerning properties of diagnostic testing for spatial 

correlation in the SAR model framework is sparse. Kelejian and Prucha (2001) derived a 

large sample distribution of the Moran’s I test statistic for a variety of important models 

including the SAR model. Under the assumption of i.i.d. innovations, Moran’s I statistic 

follows the normal distribution asymptotically. In other words, when the i.i.d. assumption 

is violated, it is questionable whether testing for spatial correlation can be based on the 

theoretical normal distribution of Moran’s I statistic. Anselin and Kelejian (1997) 

indicate that Moran’s I test based on its asymptotic theory works poorly in the SAR 

model framework. For many real world applications, the asymptotic theory of Moran’s I 

test may not be applicable because the classical i.i.d. assumption is rarely satisfied. In our 

previous work (Lin, Long, and Ou (2008)) examining the properties of the Moran test 

using bootstrap methods in a linear regression model with non-normal innovations, we 

found that the bootstrap test is an effective alternative to the asymptotic test in terms of 

size and power performance. In this paper, we study and evaluate the empirical size and 

power of the bootstrap test based on Moran’s I statistic in the SAR model framework. 

Evidences from extensive Monte Carlo experiments show that our results compare 

favorably with bootstrap methods for diagnostic testing of spatial correlation in the SAR 

model framework.  

This paper consists of four sections. In the first section, we estimate the SAR model 

using the 2SLS method and derive Moran’s I statistic to test for spatial correlation in the 

SAR model. After a brief review of concepts of the spatial bootstrap test, the second 

section proposes the analytical framework of studying properties of spatial bootstrap 

tests based on the P-value of Moran’s I statistic. The third section describes the 

simulation design and reports Monte Carlo experiments of our current study. The final 

section is the conclusion. 
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2. Spatial Autoregressive Model and Moran’s I Test Statistic 

In this section, we give a brief description of the SAR model and outline the Moran 

test procedure for spatial correlation. First, we present the 2SLS estimation for the SAR 

model. Then, we summarize the asymptotic distribution of Moran’s I statistic in the SAR 

model framework. 

 

2.1 SAR Model 

We consider the following cross sectional SAR model: 

εβλ ++= XWyy                            

  εδ += Z                            (1) 

),0(~ 2σε iidi , 1<λ  

where ),( XWyZ = and )'',( βλδ = . Here y is an 1×N vector of data observations on the 

dependent variable; λ  is the spatial lag parameter, which is assumed to be less than one 

in absolute value; W is an NN × non-stochastic weights matrix with zero diagonal and 

row-standardized, which are known a priori; X is a fixed kN × matrix of data observations 

on the explanatory variables; β  is a 1×k vector of regression coefficients; ε  is 

an 1×N vector of regression disturbances. 

The specifications in (1) can be expressed in the reduced form as: 

               )()( 1 εβλ +−= − XWIy n  

Furthermore, 

               ]')[()(]')[( 1 εεβλε +−= − XEWIWWyE n  

                         12 )( −−= WIW n λσ  

                         0≠  

Obviously, the spatial lagged dependent variable Wy  is random and correlated with 

the disturbance termε . The model cannot be estimated by the OLS method. If the 

disturbances are known to follow a normal distribution, the ML method is efficient. 

Quasi ML (or QML) method can be used even if the model distribution is not normal (see 

Lee (2004)). However, computational complexities involved with the inverse and 
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determinant evaluation of the Jacobian matrix create a practical difficulty in using the 

ML or QML method even if the sample size is only moderate (see Kelejian & Prucha, 

(1999)). These complexities can be especially overwhelming if the ML or QML method 

is used in a Monte Carlo simulation. Nevertheless, the SAR model can be consistently 

estimated by the 2SLS or GMM method with proper instruments. The 2SLS or GMM 

method is computationally simpler than the QML method and is free of distributional 

assumption (see Kelejian & Prucha (1998, 1999), Lee (2003, 2007)). It is the current 

trend to use 2SLS or GMM methods for a spatial model estimation, particularly a Monte 

Carlo simulation. In this study, we implement the 2SLS method to estimate the SAR 

model according to the following steps: 

(i) Choose the instrument variables matrixH with full column rank. It is composed of a 

subset of the linearly independent columns of ),,,( 2
⋯XWWXX . We usually 

letH be the linearly independent columns of ),,( 2XWWXX . 

(ii) RegressWy on H, and obtain fitted values PWyWy =
^

. Here ')'( 1HHHHP −= . 

(iii) Obtain the consistent estimator of )'',( βλδ =  by regressing y on ),(
^^

XWyZ = . 

Namely, yZZZ
^

1
^^^

)'( −=δ . It is equivalent to yZZZ
^

1
^^

)'( −=δ  or 

PyZPZZ ')'( 1
^

−=δ . 

The consistent estimator
^

δ is sensitive to the choice of the spatial contiguity matrix 

in addition to the classical i.i.d. assumption. For example, the 2SLS estimator vector
^

δ is 

inconsistent when the spatial weights matrix W has zero diagonal elements and other 

elements are equal to 
1

1

−N
(Kelejian & Prucha (2002)). In others words, 2SLS 

estimation methods are not efficient with the equal spatial weights. 

We now obtain the regression residuals based on the 2SLS consistent estimator 

)'',(
^^^

βλδ = , from which Moran’s I statistic is computed. 
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2.2 Moran’s I Statistic 

The most popular testing procedure for spatial correlation is the one based on 

Moran’s I statistic (Moran (1950)). Though it has a long history of applications in linear 

regression models, the Moran test has only recently been applied to the SAR model. 

Anselin (1988) presented a large sample distribution of this statistic based on ML 

residuals (see also Anselin, Bera, Florax, and Yoon (1996)). Kelejian and Prucha (2001) 

derived a general result based on 2SLS residuals (see also Anselin and Kelejian (1997), 

Pinkse (2004)). According to Kelejian and Prucha (2001), we summarize the asymptotic 

distribution of Moran’s I statistic in the SAR model framework. 

For a given spatial weight matrix W, Moran’s I test statistic for the SAR model is 

given by 

^^

^^

'

'

εε

εε W
I =                  (2) 

where '
^^^

βλε XWyy −−= is the vector of 2SLS residuals. Under some regularity 

assumptions (see Kelejian & Prucha (2001)), Moran’s I statistic in (2) is shown to be 

asymptotically normal, specifically, 

)1,0(~
)(

N
IVar

I
           (3) 

where 

})'({
1

)(
2^2

σ

γ
++= WWWWtrace

N
IVar ,

^
1

^

)'(')'()'(' εεγ WWZPZZZWW ++= − ,
N

^^
2^ 'εε

σ = .

 Therefore, based on 2SLS residuals of the SAR model, we can theoretically apply the 

above Moran’s I statistic to test for spatial correlation, provided the model error is 

normally independently distributed.  

 

3. Size and Power of the Spatial Bootstrap Test 

Instead of relying on the asymptotic theory of the Moran test, we suggest the use of 

the bootstrap method for diagnostic testing of spatial correlation in the SAR model. 

Based on the empirical distribution of the Moran’s I test statistic, the performance of the 



 7 

bootstrap test is evaluated. In particular, following the similar design and procedure of 

Anselin and Kelejian (1997) and Lin, Long, and Ou (2008), the finite sample properties 

of the bootstrap Moran test are examined from a large number of Monte Carlo simulation 

experiments. 

In the following sections, we review the bootstrap methods suitable for testing 

spatial dependence in a spatial econometric model. We outline the simulation and 

bootstrap procedure to construct the empirical distribution of the Moran’s I test statistic. 

By examining the empirical and asymptotic distributions of the test statistics, the size and 

power of the bootstrap test can be evaluated and compared with those of the asymptotic 

test.  

 

3.1 Spatial Bootstrap Test Based on Moran’s I Statistic 

In many real world applications, hypothesis testing based on the asymptotic theory 

may not be applicable because classical model assumptions such as homoscedasticity and 

normality are rarely satisfied. In 1979, Efron introduced a resampling procedure, named 

the bootstrap, for estimating the distribution of model parameters and test statistics. The 

bootstrap method is a useful nonparametric alternative to the theoretical asymptotic 

approach for model estimation and hypothesis testing. It has been successfully applied in 

time series and panel data econometrics (see Davidson and MacKinnon (2006), Chang 

(2004), Park (2003)). 

For a spatial econometric model, the asymptotic theory of Moran’s I statistic in the 

SAR model is not valid when the model error is heteroscedastic or non-normally 

distributed. A bootstrap technique used to overcome this difficulty is called the spatial 

bootstrap test. The spatial bootstrap test is defined to be a residual-based wild bootstrap 

method for a spatial econometric model, in which the spatial structure of the cross section 

data is preserved during bootstrap simulation. Given fixed regressors and an exogenously 

defined spatial weights matrix, the spatial data structure is maintained by bootstrapping 

the regression residuals. Lin, Long and Ou (2008) found that a spatial bootstrap test based 

on the OLS residuals is an effective alternative to the theoretical asymptotic approach 

when the classical normality assumption is violated. In this study, the spatial bootstrap 

test based on Moran’s I statistic is used to test for spatial correlation in the SAR model.  
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For model evaluation, small sample properties of the parameter estimators and test 

statistics are evaluated using Monte Carlo simulations. In the following, we describe the 

spatial bootstrap test based on a typical Monte Carlo simulation experiment as follows: 

(i) For each i-th Monte Carlo experiment ( Mi ,,1⋯= ), given the fixed regressors X 

and spatial weights matrix W, we consider the data generating process (DGP) iµ  

or a pair of the data observation ),( Xy . The data is used to estimate the SAR model 

(1) using the 2SLS method. Then, with the 2SLS estimator )'',(
^^^

βλδ =  and the 

residual vector 
^ ^ ^

ˆy Z y W Xε δ λ β= − = − − , we compute the Moran’s I test statistic 

^

I  according to (2). 

(ii) Re-scale and re-center the 2SLS residual k

^

ε : 

Nk
hNhN

N N

l
l

l

k

k
k ,,2,1,

1

1

11 1
2

^

2

^
~

⋯=














−
−

−−
= ∑

=

εε
ε       （4） 

Where kh (or lh ) is the k-th (or l-th) diagonal element of the hat matrix ')'(
^

1
^

ZZZZ −

 

based on the 2SLS estimation method. 

(iii) We obtain a bootstrap sample
~

e  by N random draws with replacement from the 

elements of
~

ε . It is evident that the wild bootstrap is more effective in a model with 

general heteroscedasticity (see Wu (1986), Liu (1988), Davidson and Flachaire 

(2008)). Thus, the spatial bootstrap test is based on the wild bootstrap of 2SLS 

residuals in the SAR model. Let kkk vee ⋅=
~^

, ( Nk ,,2,1 ⋯= ). The popular choices 

for the distribution of the random variable kv  are the following two-point 

distributions (see Mammen (1993), Davidson and Flachaire (2008)): 

First,    


−

=
0.5y probabilitth         wi1

0.5y  probabilit     with 1
kv                             (5) 

Second,  






+

+=−
=

p-1y probabilit       with1)/25(

)52/()15(py  probabilit    with 1)/2-5(
kv          (6) 
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We call the wild bootstrap method corresponding to (5) the symmetric wild 

bootstrap, and that corresponding to (6) the asymmetric wild bootstrap. 

(iv) During each i-th Monte Carlo experiment, we obtain the j-th bootstrap DGP *

, jiµ  

from iµ  and the corresponding bootstrap sample is 
~

( , )y X  where 

^^^~

eXWyy ++= βλ . We note that X is fixed and W is exogenous. With the 2SLS 

estimator )'',( *** βλδ = of the SAR model, the residual vector is 

* * *e y Wy Xλ β= − − . Based on (2), we compute the Moran’s I test statistic, and 

denote 
^
*

, jiI . 

(v) Repeat (iii) and (iv) for B times. For the i-th Monte Carlo experiment with the 

original data ),( Xy , the Moran’s I statistic is 
^

iI ; with its B bootstrap samples 

~

( , )y X , the corresponding bootstrap test statistics are 
^
*

,

^
*

2,

^
*

1, ,,, Biii III ⋯ . 

After a large number of Monte Carlo simulation experiments are performed based 

on the above bootstrap procedure, there are M sets of bootstrap Moran’s I test statistics  

(
^

iI ,
^
*

,

^
*

2,

^
*

1, ,,, Biii III ⋯ , i = 1,2,…M). From the empirical distribution of these Moran’s I test 

statistics, we evaluate and compare the performance of the asymptotic and bootstrap tests.  

 

3.2 P-Value of the Spatial Bootstrap Test Statistic 

P-value is the probability of the null hypothesis being rejected. Generally, we 

compute P-value for hypothesis testing based on the asymptotic distribution of the test 

statistic. Since the bootstrap test is a nonparametric process in nature, its P-value is 

computed from the empirical distribution of the test. For hypothesis testing, P-value can 

provide more information than the test statistic itself (see Davidson and MacKinnon 

(1999, 2006)).  

The Moran test for spatial correlation is a two-tail test. However, it may not be 

symmetric. For the i-th Monte Carlo experiment with DGP iµ , i = 1,2,…M, the 

equal-tail P-value of the bootstrap Moran’s I test statistic can be expressed as: 
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∑∑
==

>≤=
B

j

iji

B

j

ijii III
B

III
B

IP
1

^^
*

,

1

^^
*

.

^
* ))(

1
,)(

1
min(2)(       (7) 

where )(⋅I denotes the indicator function, which is equal to 1 if its argument is true and 0 

otherwise. Given a nominal level of significance α , we compare )(
^

*
iIP with α . For 

example, %5=α . Specifically, when α<)(
^

*
iIP , we reject the null hypothesis of no 

spatial dependence. Otherwise, it can not be rejected. For notational compatibility, we 

denote 
^

( )iP I
 
the P-value of the Moran’s I test statistic 

^

iI  
based on the asymptotic 

normal distribution.   

 

3.3 Size Distortion of the Spatial Bootstrap Test 

Based on the bootstrap Moran’s I test statistic, we expect that the count of 

α<)(
^

*
iIP  or the rejection probability is small in order to accept a true hypothesis of no 

spatial correlation. When a bootstrap test wrongfully rejects the true null, the rejection 

probability is ∑
=

<
M

i

iIPI
M 1

^
* ))((

1
α . The size distortion of the test is the difference 

between the size and the nominal level of significance α . The smaller the size distortion 

is, the better the spatial bootstrap test performs. We have 

αα −<= ∑
=

M

i

iIPI
M

DistortionS
1

^
*

))((
1

 ize           (8) 

where )(⋅I denotes the indicator function of rejection probability. That is, when α<)(
^

*

iIP , 

we reject the null hypothesis of no spatial correlation and 1))((
^

* =<αiIPI . Otherwise, 

we cannot reject the null and 0))((
^

* =< αiIPI .  

 

 

3.4 Power of the Spatial Bootstrap Test 

Similarly, if the 2SLS residuals of the SAR model were contaminated with spatial 

correlation, we expect that hypothesis testing can identify the spatial correlation with a 
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large probability of rejecting the false null hypothesis. By definition, this rejection 

probability is the power of the test. 

Suppose that the null hypothesis is false and if α≥)(
^

*

iIP , we fail to reject it. This is 

called a Type II error with the probability ∑
=

≥=
M

i

iIPI
M 1

^
* ))((

1
αβ . Therefore, the power 

of the test is one minus the probability of Type II error. That is, 

∑
=

<=−=
M

i

iIPI
M

P
1

^
* ))((

1
1ower αβ           (9) 

Obviously, the power of a test depends on the alternative hypothesis under 

consideration. For simplicity, in this study we consider spatial autocorrelation in the 

model disturbances – the spatial autoregressive model with autoregressive disturbance (or 

SARAR) model. Other alternatives are possible, such as moving average disturbances or 

mixed and higher order models.  

With a large number of Monte Carlo simulations, we can compute the size distortion 

and power of the spatial bootstrap test based on (8) and (9) respectively. Then, the 

performance of the spatial bootstrap test can be evaluated. In general, a smaller size 

distortion and larger power are preferred. It is clear that the comparison and evaluation of 

the spatial bootstrap and asymptotic tests rely on the simulation design and strategy of the 

Monte Carlo experiments described below.  

 

4. Monte Carlo Experiments of the Spatial Bootstrap Test 

In this section we first present the design of Monte Carlo experiments for the SAR 

model framework. Then we describe the simulation procedure to evaluate the size and 

power of the spatial bootstrap test for spatial correlation in the SAR model. Finally, we 

report the simulation results. 

 

 

4.1 Experimental Design 

To test for spatial dependence in the SAR model, the null hypothesis assumes no 

spatial correlation in the 2SLS residuals. The null model is the maintained SAR model 
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without spatial autocorrelation in the model disturbances. Although there are many 

possible alternatives of interest, for simplicity we assume the SARAR model defined 

by ερβλ 1)( −−++= WIXWyy N . Depending on the size or power evaluation, the data 

generating process for the Monte Carlo experiments assume either the null SAR model or 

the alternative SARAR model
2
. 

Based on the experience of previous simulation studies in related models (see 

Anselin, Bera, Florax, and Yoon (1996), Anselin and Kelejian (1997), Davidson and 

MacKinnon (2002)), we perform 5000 Monte Carlo experiments for each model design 

with the following setup of variables and parameters in the SAR model framework: 

(i) The spatial weights matrices under consideration include one real irregular-spaced 

first-order contiguity matrix Wmat of Anselin (1998)
3
 and two hypothetical 

regular-spaced contiguity matrices of Rook (4 neighbors) and Queen (8 neighbors)  

configuration, respectively. These spatial contiguity matrices are properly 

row-standardized with zero diagonal. Different sample sizes are considered as well: 

N = 36, 49, 81, 121. 

(ii) X is the data matrix of three independent variables, where the first two are drawn 

from a uniform (0,10) distribution and the third is a constant term 1. We 

superimpose an outlier in the first independent variable
4
. The corresponding 

regression parameter vector is ')1,1,1(=β . 

(iii) Under the null hypothesis of a SAR model, we consider four cases of spatial lag 

parameters: 7.0 and ,3.0,3.0,7.0 −−=λ . When the alternative SARAR model is 

considered, we assume that the spatial autocorrelation parameter  ρ ranges from -0.9 

to 0.9 with an interval of 0.1. 

                                                 

2
 An interesting alternative is the spatial autoregressive with moving average disturbances (or the 

“SARMA” model) defined by εθβλ )( WIXWyy N +++= . Our extensive Monte Carlo simulations 

include this alternative, but do not find any major differences from the SARAR model. 
3
 Spatial weights matrix Wmat was first used in Anselin (1988) for a crime rate study of 49 neighborhoods 

in Columbus, Ohio.  
4
 As in Davidson and MacKinnon (2002), the second observation of the first independent variable is 

inflated 10 times the original value. The abnormality of the first independent variable is used to magnify 

the effect of heteroscedasticity in the model. 
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(iv) For the model disturbance termε , we consider two distributions: 1ε and 2ε . 1ε is 

named the heteroscedastic disturbance and is defined by the product of a standard 

normal variate and the first independent variable with outlier (see Davidson and 

MacKinnon (2002)). 2ε is a weighted average of )1(2χ random variate 

and )2(t random variate with a uniformly distributed random weight between 0 and 

1. This is a stochastic mixture of two non-normal distributions, which generates a 

random variable with unknown distribution. We call this a mixture disturbance. 

(v) Based on the above variables and parameters setup, the dependent variable y is 

generated as εβλ ++= XWyy for the null SAR model. For the alternative SARAR 

model ερβλ 1)( −−++= WIXWyy N  when 0ρ ≠ . 

When we study the size distortion of the spatial bootstrap test, the DGP is based on 

the null SAR model. For power studies, the DGP depends on the alternative SARAR 

model.  

 

4.2 Simulation Procedure 

To study the properties of the spatial bootstrap test in relation to its asymptotic 

counterpart, we describe the step-by-step procedure of the Monte Carlo simulation as 

follows: 

(i) According to the experimental design, the regressors X, spatial contiguity weights 

matrix W, regression parameter vector β , and spatial correlation parameters (λ , ρ ) 

are given, where X and W are assumed to be fixed in all Monte Carlo experiments.  

(ii) A model disturbance term ( 1ε or 2ε ) is generated randomly, according to the model 

assumption under consideration. That is, 1ε  is a heteroscedastic disturbance and 2ε  

is a non-normal mixture disturbance. 

(iii) When we study the size distortion of the spatial bootstrap test, the dependent 

variable y is generated as εβλ ++= XWyy for the null SAR model. When the 

power of the spatial bootstrap test is considered, the dependent variable is generated 

as ερβλ 1)( −−++= WIXWyy N  for the alternative SARAR model. 

(iv) The spatial bootstrap test is computed according to Section 3.1. We obtain 1+B 

Moran’s I statistics for testing spatial correlation using a simulated 
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sample ),( Xy and the corresponding B bootstrap samples ),(
~

Xy . These are, 

respectively, iI
^

and
^
*

,

^
*

2,

^
*

1, ,,, Biii III ⋯ . 

(v) Based on the empirical distribution of the Moran’s I statistics, we compute the 

equal-tail P-value of the spatial bootstrap test’s Moran’s I statistics as described in 

Section 3.2. According to (7), )(
^

*
iIP and )(

^

iIP are the respective P-value of the 

spatial bootstrap test and the asymptotic test.  

(vi) Repeat steps (ii)-(v) for all M experiments, and with the corresponding DGPs we 

obtain M sets of P-values for the spatial bootstrap test and asymptotic test, 

)(
^

*
iIP and )(

^

iIP , Mi ,,2,1 ⋯= with 5000=M . 

(vii) When the DGP is based on the null SAR model, the size distortions of the spatial 

bootstrap and asymptotic tests are computed according to (8). When the DGP is 

based on the alternative SARAR model, the powers of the spatial bootstrap and 

asymptotic tests are computed according to (9).  

From a large number Monte Carlo experiments, the size and power of the spatial 

bootstrap test is evaluated and compared with those of the asymptotic test. 

 

4.3 Simulation Results 

It is expected that, under classical normality assumptions of the model, the 

performance of the bootstrap test is equivalent to or better than that of the asymptotic test 

in terms of size and power (see also Lin, Long, and Ou (2008)). We are interested in two 

more realistic model structures: the heteroscedastic disturbance 1ε  and the mixture 

disturbance 2ε  with unknown distribution. We apply two residual-based wild bootstrap 

methods: symmetric wild bootstrap and asymmetric wild bootstrap as described in 

Section 3.1, in which the asymmetric wild bootstrap method is shown to be a more 

effective method for non-normal models. Therefore, in the following, we present only the 
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findings for these models using the asymmetric wild bootstrap method
5
. In particular, we 

focus on two measures of the model performance: (i) a comparison of the size distortion 

of the spatial bootstrap test and asymptotic test under the true null SAR model; (ii) a 

comparison of the relative power of the tests against the alternative SARAR model
6
.  

 

4.3.1 Size Distortion of the Spatial Bootstrap Test 

Under the null hypothesis of no spatial autocorrelation in the SAR model, we 

investigate size distortion of the spatial bootstrap test for two non-normal model 

structures and three spatial weights matrices. The two model structures are the 

heteroscedastic disturbances 1ε  and the mixture disturbances 2ε . Three spatial weights 

configurations under consideration are Anselin’s Wmat matrix, Rook matrix and Queen 

matrix. To be compatible with the sample size of Anselin’s crime study (1988), our 

results of size distortion for spatial bootstrap and asymptotic tests are based on the sample 

size N=49.  

 

                                                 

5
 Because of space limitation, the lengthy output of the simulation results for the classical normal models 

and for the non-normal models with symmetric wild bootstrap method are not reported here. They are 

available upon request. 
6
 In this paper, all simulation and bootstrap computations are run using GPE2/GAUSS7.0 (see Lin (2001)) 

on a Pentium 4 2.4Ghz Windows-XP system. 
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Figure 1. Size Distortion of the Spatial Bootstrap and Asymptotic Tests: SAR Model with 

Heteroscedastic Disturbances, N=49, M=5000 

 

The graphical presentations of the size distortion for two model structures using the 

asymmetric wild bootstrap method are given in Figure 1 and Figure 2, respectively. We 

combine the plots for three spatial contiguity matrices over four values of spatial lag 

parameters (λ or Lambda = -0.7, -0.3, 0.3, 0.7). These plots are arranged into a grid table 

of three rows and four columns.  

Figure 1 portrays the size distortion of both spatial bootstrap and asymptotic tests for 

models with heteroscedastic disturbances 1ε . In relation to the number of bootstrap 

replications (B) on the horizontal axis, size distortion is shown on the vertical axis. The 

dotted curve and the dashed line represent the size distortion of the spatial bootstrap and 

asymptotic tests, respectively. The solid horizontal line is the ideal size distortion of zero. 

The closer the dotted curve (or the dashed line) is to the zero line, the better the 

performance of the bootstrap test (or the asymptotic test) is. The detailed numerical 

results are given in the Appendix Tables A.1-A.3. 

We observe that the dashed lines for asymptotic tests are far below zero for all three 

different spatial weights matrices and four selected spatial lag parameters under 
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consideration. The size distortions of the asymptotic test are rather large relative to the 

5% nominal level of significance. It indicates a negative bias of the asymptotic test in all 

cases. The asymptotic test under-rejects the null hypothesis of no spatial correlation for 

all irregular and regular lattice spatial weights matrices. It implies that the Moran test 

based on asymptotic theory may not be reliable for the SAR model with heteroscedastic 

disturbances.  

When compared with the asymptotic test, the dotted curve representing the spatial 

bootstrap test is closer to the zero line as the number of bootstrap replications increases. 

In fact, the size or size distortion of the spatial bootstrap test stabilizes as the number of 

bootstrap replications increases. The interesting exception is the one with Anselin’s 

Wmat spatial weights matrix as shown in the first row of graphs in Figure 1, where we 

find a small positive size distortion for all four values of spatial lag parameters. However, 

the extent of over-rejection is minimal compared to the 5% nominal level of significance. 

In general, when the number of bootstrap replications increases over 399, the size or size 

distortion of the spatial bootstrap test stabilizes. In order to effectively test for spatial 

dependence by the asymmetric wild bootstrap method, we find that 399 bootstrap 

replications are enough, and a larger number is not necessary.  

Subsequently, for SAR models with mixture disturbances, the size distortion of both 

the spatial bootstrap and asymptotic test are plotted in the grids of 3 by 4 of Figure 2. The 

meanings of the curves in Figure 2 are the same as in Figure 1. The corresponding details 

of the simulation results are given in the Appendix Tables A.4-A.6. 
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Figure 2. Size Distortion of the Spatial Bootstrap and Asymptotic Tests: SAR Model with 

Mixture Disturbances, N=49, M=5000 

 

Reading from Figure 2, the graphical patterns of size distortions for models with 

unknown mixture disturbances are essentially the same as those with heteroscedastic 

disturbances. In almost all cases, the size distortion of the spatial bootstrap test is very 

close to zero. Moreover, using Anselin’s Wmat spatial weights matrix, we do not find 

any over-rejection as we have seen in the models with heteroscedastic disturbances. In 

particular, when the number of bootstrap replications reaches 399 and beyond, the size 

distortion of the spatial bootstrap test is essentially nil. On the other hand, the asymptotic 

test, which under-rejects in all cases, is less reliable than the spatial bootstrap test based 

on the size distortion.  

In summary, for heteroscedastic and non-normal models, the size distortion (in 

absolute value) of the asymptotic Moran test is larger than that of the spatial bootstrap 

test. The performance of the spatial bootstrap test improves as the number of bootstrap 

replications increases. In general, the spatial bootstrap test performs well with 399 

bootstrap replications. Based on Moran’s I statistic, the spatial bootstrap test is an 

effective alternative to the theoretical asymptotic test. 
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4.3.2 Power of the Spatial Bootstrap Test 

In this section, we investigate the power of the spatial bootstrap and asymptotic tests 

for different model assumptions, spatial contiguity configurations, and sample sizes. We 

have concluded in the previous section that the size of bootstrap tests stabilizes when 

there are 399 or more bootstrap replications. Therefore, the following power results are 

based on 399 bootstrap replications using asymmetric wild bootstrap methods for two 

non-normal model structures. We note that for power evaluation, the DGP is assumed to 

be the alternative SARAR model under consideration as the null SAR model is rejected
7
. 

The power curves trace the powers of the spatial bootstrap and asymptotic tests over the 

spatial autocorrelation parameters ranging from -0.9 to 0.9 with 0.1 in each interval. 

 

4.3.2.1 Heteroscedastic Disturbances 

For models with heteroscedastic disturbances, the power of the spatial bootstrap test 

and asymptotic test are compared for four selected spatial lag parameters (-0.7, -0.3, 0.3, 

0.7) and three different configurations of a spatial weights matrix. Spatial contiguity 

structures include a Wmat matrix, Rook matrix and Queen matrix for N=49. In the 3 by 4 

grid of graphs in Figure 3, the dotted and solid curves denote the power curves for the 

spatial bootstrap test and asymptotic test, respectively. The horizontal axis of each graph 

is the value of spatial autocorrelation parameters (ρ or Rho = -0.9, -0.8, …, 0.8, 0.9). The 

vertical axis represents the power value of the tests. The higher and steeper the curve is, 

the larger the power is. We find in all cases that the dotted curves are higher and steeper 

than the corresponding solid curves. This indicates that the power of the spatial bootstrap 

test is higher than that of the asymptotic test, independent of spatial lag and 

autocorrelation parameters for all three different spatial contiguity configurations under 

consideration. The detailed numerical results are listed in Appendix Tables A.7-A.9. 

                                                 

7
 We have run the simulation according to SARMA alternatives, and have obtained similar results and 

conclusions. Due to space limitations, we report only the results of the SARAR models. 



 20 

 

Figure 3. Power of the Spatial Bootstrap and Asymptotic Tests: SARAR Alternative Model with 

Heteroscedastic Disturbances, N=49, B=399, M=5000 

 

Next, we consider the effects of sample size (N = 36, 81, and 121) and two regular 

spatial weights matrices (Rook and Queen) on the power of the spatial bootstrap and 

asymptotic tests. Figure 4 portrays the power curves when the DGP is obtained from a 

SARAR model with a Rook spatial contiguity matrix. Similarly, Figure 5 displays the 

power curves for the SARAR model with a Queen spatial contiguity matrix. It is 

observed that the power of the spatial bootstrap test is equivalent to or slightly higher 

than that of the asymptotic test in all cases for both Rook and Queen spatial contiguities. 

When the spatial weights matrix is defined by the Rook contiguity, the power curves are 

in V form as shown in Figure 4, while U-shaped curves are observed for the cases with 

the Queen spatial contiguity in Figure 5. For the models with a smaller sample size 

(N=36), as shown in the first row of graphs in Figure 4 and Figure 5, the spatial bootstrap 

test outperforms the asymptotic test independent of the values of spatial lag parameters, 

positive or negative. When the sample size increases, the power curves become steeper 

and more symmetric. The numerical results are given in Appendix Tables A.13-A.15. 
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Figure 4. Power of the Spatial Bootstrap and Asymptotic Tests: SARAR Model with 

Heteroscedastic Disturbances, W=Rook, B=399, M=5000 

 

Figure 5. Power of the Spatial Bootstrap and Asymptotic Tests: SARAR Model with 

Heteroscedastic Disturbances, W=Queen, B=399, M=5000 
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4.3.2.2 Non-Normal Mixture Disturbances 

Next, we consider the alternative SARAR model with mixture disturbances. The 

conclusion in favor of spatial bootstrap tests is similar to the cases of heteroscedastic 

disturbances. We study and compare the power of spatial bootstrap and asymptotic tests 

from the two aspects.  

First, the effects of three spatial contiguity configurations and four spatial lag 

parameters are investigated for N=49. Figure 6 shows the spatial bootstrap test to be an 

effective alternative to the asymptotic test based on Moran’s I statistic at 5% nominal 

level of significance. The U-shaped power curves for the spatial bootstrap test are similar 

to those of the heteroscedastic disturbances. In particular, the spatial bootstrap test 

performs better in the positive range of the spatial autocorrelation parameters. The 

corresponding numerical results are given in the Appendix Tables A.16-A.18. 

 

Figure 6. Power of the Spatial Bootstrap and Asymptotic Tests: SARAR Alternative Model with 

Non-Normal Mixture Disturbances, N=49, B=399, M=5000 
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Figure 7. Power of the Spatial Bootstrap and Asymptotic Tests: SARAR Alternative Model with 

Non-Normal Mixture Disturbances, W=Rook, B=399, M=5000 

 

Figure 8. Power of the Spatial Bootstrap and Asymptotic Tests: SARAR Alternative Model with 

Non-Normal Mixture Disturbances, W=Queen, B=399, M=5000 
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In addition to the case of N=49, the power of the spatial bootstrap and asymptotic 

tests is compared for different sample sizes (N = 36, 81, 121) and two regular spatial 

contiguity matrices (Rook and Queen). The corresponding graphs are presented in Figure 

7 and Figure 8. Tables of numerical results are shown in the Appendix Tables A.19-A.24.  

We find that the spatial bootstrap test performs well for the alternative SARAR 

models with non-normal mixture disturbances. For cases using the Rook spatial 

contiguity matrix, Figure 7 shows that the power curves in V-shape are similar to those of 

the heteroscedastic models in Figure 4. Similarly, cases using a Queen configuration of 

the spatial contiguity matrix show power curves in a U-shape (Figure 8), as in 

heteroscedastic models of Figure 5. In all cases of the alternative SARAR model with 

non-normal mixture disturbances, the powers of the spatial bootstrap tests are higher than 

those of the asymptotic tests, particularly with a small sample in the positive range of 

spatial autocorrelation parameters, shown in the first row of graphs in Figure 7 and 

Figure 8. 

In summary, based on our extensive Monte Carlo experiments, the power of the 

spatial bootstrap test is higher than that of the asymptotic test for non-normal models with 

heteroscedastic or mixture disturbances. The advantage of the spatial bootstrap test is 

clear for applications with a small sample and dense spatial contiguity. 

 

5. Conclusion 

In this paper, we apply asymmetric wild bootstrap methods to test spatial correlation 

in a Cliff-Ord type spatial lag model with spatial autoregressive disturbances. It is known 

that the asymptotic test performs poorly with a large size distortion and weak power 

when the classical normality assumption of the model is not satisfied. Based on Moran’s I 

test statistic computed from the 2SLS regression residuals of the SAR model, we 

demonstrate the use of bootstrap methods for diagnostic testing of the model specification. 

Our Monte Carlo experiments indicate that for more realistic applications with 

heteroscedastic and non-normal innovations, the residual-based spatial bootstrap test 

works better than the asymptotic test, particularly in cases with a small size and dense 

spatial contiguity. 
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We compare the size distortion of spatial bootstrap and asymptotic tests, based on 

Moran’s I statistic, for various structures of spatial contiguity and spatial lag parameters. 

For the non-normal models with heteroscedastic and mixture disturbances, the size 

distortion of the asymptotic test is far below the ideal zero value. However, a mere 399 

bootstrap replications stabilizes the size of bootstrap tests to the ideal level.  

Considering the alternative model with spatial autoregressive disturbances, we study 

the power of the spatial bootstrap and asymptotic tests. We find that the choice of model 

specification and spatial contiguity structure has an impact on the power of the bootstrap 

and asymptotic tests, especially for cases with a smaller sample. For spatial models with 

the regular lattice Queen contiguity or the more practical irregular lattice Wmat matrix, 

the power of the spatial bootstrap test is generally higher than that of the asymptotic test, 

mostly occurring in the positive range of the spatial autoregressive parameters. The U- 

shaped power curves of the spatial bootstrap and asymptotic tests are steeper and more 

symmetric as the sample increases.  

We conclude from our Monte Carlo experiments that the spatial bootstrap test is 

superior to the asymptotic test for general non-normal models, resulting in a smaller size 

distortion and larger power. In fact, using bootstrap methods for diagnostic testing the 

spatial dependence in a SAR model framework is effective and simple to implement. For 

future research, bootstrap methods will be applied to the more general LM-based tests for 

diagnostic checking and validation of a spatial econometric model. 
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Tables of simulations results A.1-A.24 are available upon request.
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